16 research outputs found

    Stu2 uses a 15-nm parallel coiled coil for kinetochore localization and concomitant regulation of the mitotic spindle

    Get PDF
    XMAP215/Dis1 family proteins are potent microtubule polymerases, critical for mitotic spindle structure and dynamics. While microtubule polymerase activity is driven by an N-terminal tumor overexpressed gene (TOG) domain array, proper cellular localization is a requisite for full activity and is mediated by a C-terminal domain. Structural insight into the C-terminal domain's architecture and localization mechanism remain outstanding. We present the crystal structure of the Saccharomyces cerevisiae Stu2 C-terminal domain, revealing a 15-nm parallel homodimeric coiled coil. The parallel architecture of the coiled coil has mechanistic implications for the arrangement of the homodimer's N-terminal TOG domains during microtubule polymerization. The coiled coil has two spatially distinct conserved regions: CRI and CRII. Mutations in CRI and CRII perturb the distribution and localization of Stu2 along the mitotic spindle and yield defects in spindle morphology including increased frequencies of mispositioned and fragmented spindles. Collectively, these data highlight roles for the Stu2 dimerization domain as a scaffold for factor binding that optimally positions Stu2 on the mitotic spindle to promote proper spindle structure and dynamics

    A cache-oblivious sparse matrix-vector multiplication scheme based on the Hilbert curve

    No full text
    The sparse matrix–vector (SpMV) multiplication is an important kernel in many applications. When the sparse matrix used is unstructured, however, standard SpMV multiplication implementations typically are inefficient in terms of cache usage, sometimes working at only a fraction of peak performance. Cache-aware algorithms take information on specifics of the cache architecture as a parameter to derive an efficient SpMV multiply. In contrast, cache-oblivious algorithms strive to obtain efficiency regardless of cache specifics. In earlier work in this latter area, Haase et al. (2007) use the Hilbert curve to order nonzeroes in the sparse matrix. They obtain speedup mainly when multiplying against multiple (up to eight) right-hand sides simultaneously. We improve on this by introducing a new datastructure, called Bi-directional Incremental Compressed Row Storage (BICRS). Using this datastructure to store the nonzeroes in Hilbert order, speedups of up to a factor two are attained for the SpMV multiplication y DAx on sufficiently large, unstructured matrices

    Untersuchung von Verfahren zur Aussenreinigung von Sportbooten als Alternative zu biozidhaltigen Unterwasseranstrichen. Teilvorhaben 2 Abschlussbericht

    No full text
    Available from TIB Hannover: RN 8908(99-118) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEUmweltbundesamt, Berlin (Germany)DEGerman

    Zeitaufgeloeste Infrarot-Messeinrichtung Schlussbericht

    No full text
    Available from TIB Hannover: FR 5361(7)+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore