111 research outputs found
Feedback control of parametrized PDEs via model order reduction and dynamic programming principle
In this paper, we investigate infinite horizon optimal control problems for parametrized partial differential equations. We are interested in feedback control via dynamic programming equations which is well-known to suffer from the curse of dimensionality. Thus, we apply parametric model order reduction techniques to construct low-dimensional subspaces with suitable information on the control problem, where the dynamic programming equations can be approximated. To guarantee a low number of basis functions, we combine recent basis generation methods and parameter partitioning techniques. Furthermore, we present a novel technique to construct non-uniform grids in the reduced domain, which is based on statistical information. Finally, we discuss numerical examples to illustrate the effectiveness of the proposed methods for PDEs in two space dimensions
Greedy kernel methods for center manifold approximation
For certain dynamical systems it is possible to significantly simplify the study of stability by means of the center manifold theory. This theory allows to isolate the complicated asymptotic behavior of the system close to a non-hyperbolic equilibrium point, and to obtain meaningful predictions of its behavior by analyzing a reduced dimensional problem. Since the manifold is usually not known, approximation methods are of great interest to obtain qualitative estimates. In this work, we use a data-based greedy kernel method to construct a suitable approximation of the manifold close to the equilibrium. The data are collected by repeated numerical simulation of the full system by means of a high-accuracy solver, which generates sets of discrete trajectories that are then used to construct a surrogate model of the manifold. The method is tested on different examples which show promising performance and good accuracy
Interpolation with uncoupled separable matrix-valued kernels
In this paper we consider the problem of approximating vector-valued functions over a domain Ω. For this purpose, we use matrix-valued reproducing kernels, which can be related to Reproducing kernel Hilbert spaces of vectorial functions and which can be viewed as an extension of the scalar-valued case. These spaces seem promising, when modelling correlations between the target function components, as the components are not learned independently of each other. We focus on the interpolation with such matrix-valued kernels. We derive error bounds for the interpolation error in terms of a generalized power-function and we introduce a subclass of matrix-valued kernels whose power-functions can be traced back to the power-function of scalar-valued reproducing kernels. Finally, we apply these kind of kernels to some artificial data to illustrate the benefit of interpolation with matrix-valued kernels in comparison to a componentwise approach
A weighted reduced basis method for parabolic PDEs with random data
This work considers a weighted POD-greedy method to estimate statistical
outputs parabolic PDE problems with parametrized random data. The key idea of
weighted reduced basis methods is to weight the parameter-dependent error
estimate according to a probability measure in the set-up of the reduced space.
The error of stochastic finite element solutions is usually measured in a root
mean square sense regarding their dependence on the stochastic input
parameters. An orthogonal projection of a snapshot set onto a corresponding POD
basis defines an optimum reduced approximation in terms of a Monte Carlo
discretization of the root mean square error. The errors of a weighted
POD-greedy Galerkin solution are compared against an orthogonal projection of
the underlying snapshots onto a POD basis for a numerical example involving
thermal conduction. In particular, it is assessed whether a weighted POD-greedy
solutions is able to come significantly closer to the optimum than a
non-weighted equivalent. Additionally, the performance of a weighted POD-greedy
Galerkin solution is considered with respect to the mean absolute error of an
adjoint-corrected functional of the reduced solution.Comment: 15 pages, 4 figure
Model Reduction for Multiscale Lithium-Ion Battery Simulation
In this contribution we are concerned with efficient model reduction for
multiscale problems arising in lithium-ion battery modeling with spatially
resolved porous electrodes. We present new results on the application of the
reduced basis method to the resulting instationary 3D battery model that
involves strong non-linearities due to Buttler-Volmer kinetics. Empirical
operator interpolation is used to efficiently deal with this issue.
Furthermore, we present the localized reduced basis multiscale method for
parabolic problems applied to a thermal model of batteries with resolved porous
electrodes. Numerical experiments are given that demonstrate the reduction
capabilities of the presented approaches for these real world applications
A NEW APPROACH FOR AMERICAN OPTION PRICING: THE DYNAMIC CHEBYSHEV METHOD
We introduce a new method to price American options based on Chebyshev interpolation. In each step of a dynamic programming time-stepping we approximate the value function with Chebyshev polynomials. The key advantage of this approach is that it allows us to shift the model-dependent computations into an offline phase prior to the time-stepping. In the offline part a family of generalized (conditional) moments is computed by an appropriate numerical technique such as a Monte Carlo, PDE, or Fourier transform based method. Thanks to this methodological flexibility the approach applies to a large variety of models. Online, the backward induction is solved on a discrete Chebyshev grid, and no (conditional) expectations need to be computed. For each time step the method delivers a closed form approximation of the price function along with the options' delta and gamma. Moreover, the same family of (conditional) moments yield multiple outputs including the option prices for different strikes, maturities, and different payoff profiles. We provide a theoretical error analysis and find conditions that imply explicit error bounds for a variety of stock price models. Numerical experiments confirm the fast convergence of prices and sensitivities. An empirical investigation of accuracy and runtime also shows an efficiency gain compared with the least-squares Monte Carlo method introduced by Longstaff and Schwartz [Rev. Financ. Stud., 14 (2001), pp. 113-147]. Moreover, we show that the proposed algorithm is flexible enough to price barrier and multivariate barrier options
A Two-Step Certified Reduced Basis Method
In this paper we introduce a two-step Certified Reduced Basis (RB) method. In the first step we construct from an expensive finite element “truth” discretization of dimension N an intermediate RB model of dimension N≪N . In the second step we construct from this intermediate RB model a derived RB (DRB) model of dimension M≤N. The construction of the DRB model is effected at cost O(N) and in particular at cost independent of N ; subsequent evaluation of the DRB model may then be effected at cost O(M) . The DRB model comprises both the DRB output and a rigorous a posteriori error bound for the error in the DRB output with respect to the truth discretization.
The new approach is of particular interest in two contexts: focus calculations and hp-RB approximations. In the former the new approach serves to reduce online cost, M≪N: the DRB model is restricted to a slice or subregion of a larger parameter domain associated with the intermediate RB model. In the latter the new approach enlarges the class of problems amenable to hp-RB treatment by a significant reduction in offline (precomputation) cost: in the development of the hp parameter domain partition and associated “local” (now derived) RB models the finite element truth is replaced by the intermediate RB model. We present numerical results to illustrate the new approach.United States. Air Force Office of Scientific Research (AFOSR Grant number FA9550-07-1-0425)United States. Department of Defense. Office of the Secretary of Defense (OSD/AFOSR Grant number FA9550-09-1-0613)Norwegian University of Science and Technolog
A nested alignment graph kernel through the dynamic time warping framework
In this paper, we propose a novel nested alignment graph kernel drawing on depth-based complexity traces and the dynamic time warping framework. Specifically, for a pair of graphs, we commence by computing the depth-based complexity traces rooted at the centroid vertices. The resulting kernel for the graphs is defined by measuring the global alignment kernel, which is developed through the dynamic time warping framework, between the complexity traces. We show that the proposed kernel simultaneously considers the local and global graph characteristics in terms of the complexity traces, but also provides richer statistic measures by incorporating the whole spectrum of alignment costs between these traces. Our experiments demonstrate the effectiveness and efficiency of the proposed kernel
Reduced basis isogeometric mortar approximations for eigenvalue problems in vibroacoustics
We simulate the vibration of a violin bridge in a multi-query context using
reduced basis techniques. The mathematical model is based on an eigenvalue
problem for the orthotropic linear elasticity equation. In addition to the nine
material parameters, a geometrical thickness parameter is considered. This
parameter enters as a 10th material parameter into the system by a mapping onto
a parameter independent reference domain. The detailed simulation is carried
out by isogeometric mortar methods. Weakly coupled patch-wise tensorial
structured isogeometric elements are of special interest for complex geometries
with piecewise smooth but curvilinear boundaries. To obtain locality in the
detailed system, we use the saddle point approach and do not apply static
condensation techniques. However within the reduced basis context, it is
natural to eliminate the Lagrange multiplier and formulate a reduced eigenvalue
problem for a symmetric positive definite matrix. The selection of the
snapshots is controlled by a multi-query greedy strategy taking into account an
error indicator allowing for multiple eigenvalues
Non-intrusive polynomial chaos method applied to full-order and reduced problems in computational fluid dynamics: A comparison and perspectives
In this work, Uncertainty Quantification (UQ) based on non-intrusive Polynomial Chaos Expansion (PCE) is applied to the CFD problem of the flow past an airfoil with parameterized angle of attack and inflow velocity. To limit the computational cost associated with each of the simulations required by the non-intrusive UQ algorithm used, we resort to a Reduced Order Model (ROM) based on Proper Orthogonal Decomposition (POD)-Galerkin approach. A first set of results is presented to characterize the accuracy of the POD-Galerkin ROM developed approach with respect to the Full Order Model (FOM) solver (OpenFOAM). A further analysis is then presented to assess how the UQ results are affected by substituting the FOM predictions with the surrogate ROM ones
- …