23,287 research outputs found
Frobenius theorem and invariants for Hamiltonian systems
We apply Frobenius integrability theorem in the search of invariants for
one-dimensional Hamiltonian systems with a time-dependent potential. We obtain
several classes of potential functions for which Frobenius theorem assures the
existence of a two-dimensional foliation to which the motion is constrained. In
particular, we derive a new infinite class of potentials for which the motion
is assurately restricted to a two-dimensional foliation. In some cases,
Frobenius theorem allows the explicit construction of an associated invariant.
It is proven the inverse result that, if an invariant is known, then it always
can be furnished by Frobenius theorem
Chord Label Personalization through Deep Learning of Integrated Harmonic Interval-based Representations
The increasing accuracy of automatic chord estimation systems, the
availability of vast amounts of heterogeneous reference annotations, and
insights from annotator subjectivity research make chord label personalization
increasingly important. Nevertheless, automatic chord estimation systems are
historically exclusively trained and evaluated on a single reference
annotation. We introduce a first approach to automatic chord label
personalization by modeling subjectivity through deep learning of a harmonic
interval-based chord label representation. After integrating these
representations from multiple annotators, we can accurately personalize chord
labels for individual annotators from a single model and the annotators' chord
label vocabulary. Furthermore, we show that chord personalization using
multiple reference annotations outperforms using a single reference annotation.Comment: Proceedings of the First International Conference on Deep Learning
and Music, Anchorage, US, May, 2017 (arXiv:1706.08675v1 [cs.NE]
Probing the Light Pseudoscalar Window
Very light pseudoscalars can arise from the symmetry-breaking sector in many
extensions of the Standard Model. If their mass is below 200 MeV, they can be
long-lived and have interesting phenomenology. We discuss the experimental
constraints on several models with light pseudoscalars, including one in which
the pseudoscalar is naturally fermiophobic. Taking into account the stringent
bounds from rare K and B decays, we find allowed parameter space in each model
that may be accessible in direct production experiments. In particular, we
study the photoproduction of light pseudoscalars at Jefferson Lab and conclude
that a beam dump experiment could explore some of the allowed parameter space
of these models.Comment: 22 pages, 4 figure
On the linearization of the generalized Ermakov systems
A linearization procedure is proposed for Ermakov systems with frequency
depending on dynamic variables. The procedure applies to a wide class of
generalized Ermakov systems which are linearizable in a manner similar to that
applicable to usual Ermakov systems. The Kepler--Ermakov systems belong into
this category but others, more generic, systems are also included
Monitoring vegetation conditions from LANDSAT for use in range management
A summary of the LANDSAT Great Plains Corridor projects and the principal results are presented. Emphasis is given to the use of satellite acquired phenological data for range management and agri-business activities. A convenient method of reducing LANDSAT MSS data to provide quantitative estimates of green biomass on rangelands in the Great Plains is explained. Suggestions for the use of this approach for evaluating range feed conditions are presented. A LANDSAT Follow-on project has been initiated which will employ the green biomass estimation method in a quasi-operational monitoring of range readiness and range feed conditions on a regional scale
Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation
The author has identified the following significant results. The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with green biomass and vegetation moisture content. This report details the progress being made toward determining factors associated with the transformed vegetation index (TVI) and limitations on the method. During the first year of ERTS-1 operation (cycles 1-20), an average of 50% usable ERTS-1 data was obtained for the ten Great Plains Corridor test sites
Monitoring vegetation systems in the Great Plains with ERTS
The Great Plains Corridor rangeland project utilizes natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. A method has been developed for quantitative measurement of vegetation conditions over broad regions using ERTS-1 MSS data. Radiance values recorded in ERTS-1 spectral bands 5 and 7, corrected for sun angle, are used to compute a band ratio parameter which is shown to be correlated with aboveground green biomass on rangelands
The ionization structure of the Orion nebula: Infrared line observations and models
Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement
Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation
The author has identified the following significant results. The Great Plains Corridor rangeland project successfully utilized natural vegetation systems as phenological indicators of seasonal development and climatic effects upon regional growth conditions. An effective method was developed for quantitative measurement of vegetation conditions, including green biomass estimates, recorded in bands 5 and 6, corrected for sun angle, were used to compute a ratio parameter (TV16) which is shown to be highly correlated with green biomass and vegatation moisture content. Analyses results of ERTS-1 digital data and correlated ground data are summarized. Attention was given to analyzing weather influences and test site variables on vegetation condition measurements with ERTS-1 data
- …