1,650 research outputs found
Mitochondrial Dysfunction in Aging and Diseases of Aging.
Mitochondria have been increasingly recognized as the important players in the aging process [...]
CoQ10 and Aging.
The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy
Aggregation and Representation in the European Parliament Party Groups
While members of the European Parliament are elected in national constituencies, their votes are determined by the aggregation of MEPs in multinational party groups. The uncoordinated aggregation of national party programmes in multinational EP party groups challenges theories of representation based on national parties and parliaments. This article provides a theoretical means of understanding representation by linking the aggregation of dozens of national party programmes in different EP party groups to the aggregation of groups to produce the parliamentary majority needed to enact policies. Drawing on an original data source of national party programmes, the EU Profiler, the article shows that the EP majorities created by aggregating MEP votes in party groups are best explained by cartel theories. These give priority to strengthening the EP’s collective capacity to enact policies rather than voting in accord with the programmes they were nationally elected to represent
Changes in Motoric, Exploratory, and Emotional Behaviours and Neuronal Acetylcholine Content and 5-HT Turnover in Histidine Decarboxylase-KO Mice
Histamine has been implicated, inter alia, in mechanisms underlying arousal, exploratory behaviour and emotionality. Here, we investigated behavioural and neurochemical parameters related to these concepts, including open-field activity, rotarod performance and anxiety, as well as brain acetylcholine and 5-HT concentrations of mice deficient for the histidine decarboxylase (HDC) gene. These mice are unable to synthesize histamine from its precursor histidine. The HDC-knockout mice showed reduced exploratory activity in an open-field, but normal habituation to a novel environment. They behaved more anxious than the controls, as assessed by the height–fear task and the graded anxiety test, a modified elevated plus-maze. Furthermore, motor coordination on the rotarod was superior to controls. Biochemical assessments revealed that the HDC-knockout mice had higher acetylcholine concentrations and a significantly higher 5-HT turnover in the frontal cortex, but reduced acetylcholine levels in the neostriatum. These results are suggestive of important interactions between neuronal histamine and these site-specific neurotransmitters, which may be related to the behavioural changes found in the HDC-deficient animals
The Effect of the Thioether-Bridged, Stabilized Angiotensin-(1–7) Analogue Cyclic Ang-(1–7) on Cardiac Remodeling and Endothelial Function in Rats with Myocardial Infarction
Modulation of renin-angiotensin system (RAS) by angiotensin-(1–7) (Ang-(1–7)) is an attractive approach to combat the detrimental consequences of myocardial infarction (MI). However Ang-(1–7) has limited clinical potential due to its unfavorable pharmacokinetic profile. We investigated effects of a stabilized, thioether-bridged analogue of Ang-(1–7) called cyclic Ang-(1–7) in rat model of myocardial infarction. Rats underwent coronary ligation or sham surgery. Two weeks thereafter infusion with 0.24 or 2.4 μg/kg/h cAng-(1–7) or saline was started for 8 weeks. Thereafter, cardiac morphometric and hemodynamic variables as wells as aortic endothelial function were measured.
The average infarct size was 13.8% and was not changed by cAng-(1–7) treatment. MI increased heart weight and myocyte size, which was restored by cAng-(1–7) to sham levels. In addition, cAng-(1–7) lowered left ventricular end-diastolic pressure and improved endothelial function. The results suggest that cAng-(1–7) is a promising new agent in treatment of myocardial infarction and warrant further research
Clinical Outcomes of Intraoperative Radiation Therapy for Extremity Sarcomas
Purpose. Radiation of extremity lesions, a key component of limb-sparing therapy, presents particular challenges, with significant risks of toxicities. We sought to explore the efficacy of intraoperative radiation therapy (IORT) in the treatment of soft tissue sarcomas of the extremities. Patients. Between 1995 and 2001, 17 patients received IORT for soft tissue sarcomas of the extremities. Indications for IORT included recurrent tumors in a previously radiated field or tumors adjacent to critical structures. Results. Gross total resections were achieved in all 17 patients. Two patients experienced locoregional relapses, six patients recurred at metastatic sites, and one patient died without recurrence. Thirty-six month estimates for locoregional control, disease free survival, and overall survival were 86%, 50%, and 78%, respectively. IORT was extremely well tolerated, with no toxicities referable to IORT. Conclusions. For patients with soft tissue sarcomas of the extremities, IORT used as a boost to EBRT provides excellent local control, with limited acute toxicities
Risk of Cancer After Diagnosis of Cardiovascular Disease
BACKGROUND: Cardiovascular disease (CVD) and cancer share several risk factors. Although preclinical models show that various types of CVD can accelerate cancer progression, clinical studies have not determined the impact of atherosclerosis on cancer risk.
OBJECTIVES: The objective of this study was to determine whether CVD, especially atherosclerotic CVD, is independently associated with incident cancer.
METHODS: Using IBM MarketScan claims data from over 130 million individuals, 27 million cancer-free subjects with a minimum of 36 months of follow-up data were identified. Individuals were stratified by presence or absence of CVD, time-varying analysis with multivariable adjustment for cardiovascular risk factors was performed, and cumulative risk of cancer was calculated. Additional analyses were performed according to CVD type (atherosclerotic vs nonatherosclerotic) and cancer subtype.
RESULTS: Among 27,195,088 individuals, those with CVD were 13% more likely to develop cancer than those without CVD (HR: 1.13; 95% CI: 1.12-1.13). Results were more pronounced for individuals with atherosclerotic CVD (aCVD), who had a higher risk of cancer than those without CVD (HR: 1.20; 95% CI: 1.19-1.21). aCVD also conferred a higher risk of cancer compared with those with nonatherosclerotic CVD (HR: 1.11; 95% CI: 1.11-1.12). Cancer subtype analyses showed specific associations of aCVD with several malignancies, including lung, bladder, liver, colon, and other hematologic cancers.
CONCLUSIONS: Individuals with CVD have an increased risk of developing cancer compared with those without CVD. This association may be driven in part by the relationship of atherosclerosis with specific cancer subtypes, which persists after controlling for conventional risk factors
Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments
Alternative splicing, polyadenylation of pre-messenger RNA molecules and differential promoter usage can produce a variety of transcript isoforms whose respective expression levels are regulated in time and space, thus contributing specific biological functions. However, the repertoire of mammalian alternative transcripts and their regulation are still poorly understood. Second-generation sequencing is now opening unprecedented routes to address the analysis of entire transcriptomes. Here, we developed methods that allow the prediction and quantification of alternative isoforms derived solely from exon expression levels in RNA-Seq data. These are based on an explicit statistical model and enable the prediction of alternative isoforms within or between conditions using any known gene annotation, as well as the relative quantification of known transcript structures. Applying these methods to a human RNA-Seq dataset, we validated a significant fraction of the predictions by RT-PCR. Data further showed that these predictions correlated well with information originating from junction reads. A direct comparison with exon arrays indicated improved performances of RNA-Seq over microarrays in the prediction of skipped exons. Altogether, the set of methods presented here comprehensively addresses multiple aspects of alternative isoform analysis. The software is available as an open-source R-package called Solas at http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/
- …