1,607 research outputs found

    Mitochondrial Dysfunction in Aging and Diseases of Aging.

    Get PDF
    Mitochondria have been increasingly recognized as the important players in the aging process [...]

    CoQ10 and Aging.

    Get PDF
    The aging process includes impairment in mitochondrial function, a reduction in anti-oxidant activity, and an increase in oxidative stress, marked by an increase in reactive oxygen species (ROS) production. Oxidative damage to macromolecules including DNA and electron transport proteins likely increases ROS production resulting in further damage. This oxidative theory of cell aging is supported by the fact that diseases associated with the aging process are marked by increased oxidative stress. Coenzyme Q10 (CoQ10) levels fall with aging in the human but this is not seen in all species or all tissues. It is unknown whether lower CoQ10 levels have a part to play in aging and disease or whether it is an inconsequential cellular response to aging. Despite the current lay public interest in supplementing with CoQ10, there is currently not enough evidence to recommend CoQ10 supplementation as an anti-aging anti-oxidant therapy

    Aggregation and Representation in the European Parliament Party Groups

    Get PDF
    While members of the European Parliament are elected in national constituencies, their votes are determined by the aggregation of MEPs in multinational party groups. The uncoordinated aggregation of national party programmes in multinational EP party groups challenges theories of representation based on national parties and parliaments. This article provides a theoretical means of understanding representation by linking the aggregation of dozens of national party programmes in different EP party groups to the aggregation of groups to produce the parliamentary majority needed to enact policies. Drawing on an original data source of national party programmes, the EU Profiler, the article shows that the EP majorities created by aggregating MEP votes in party groups are best explained by cartel theories. These give priority to strengthening the EPā€™s collective capacity to enact policies rather than voting in accord with the programmes they were nationally elected to represent

    Changes in Motoric, Exploratory, and Emotional Behaviours and Neuronal Acetylcholine Content and 5-HT Turnover in Histidine Decarboxylase-KO Mice

    Get PDF
    Histamine has been implicated, inter alia, in mechanisms underlying arousal, exploratory behaviour and emotionality. Here, we investigated behavioural and neurochemical parameters related to these concepts, including open-field activity, rotarod performance and anxiety, as well as brain acetylcholine and 5-HT concentrations of mice deficient for the histidine decarboxylase (HDC) gene. These mice are unable to synthesize histamine from its precursor histidine. The HDC-knockout mice showed reduced exploratory activity in an open-field, but normal habituation to a novel environment. They behaved more anxious than the controls, as assessed by the heightā€“fear task and the graded anxiety test, a modified elevated plus-maze. Furthermore, motor coordination on the rotarod was superior to controls. Biochemical assessments revealed that the HDC-knockout mice had higher acetylcholine concentrations and a significantly higher 5-HT turnover in the frontal cortex, but reduced acetylcholine levels in the neostriatum. These results are suggestive of important interactions between neuronal histamine and these site-specific neurotransmitters, which may be related to the behavioural changes found in the HDC-deficient animals

    The Effect of the Thioether-Bridged, Stabilized Angiotensin-(1ā€“7) Analogue Cyclic Ang-(1ā€“7) on Cardiac Remodeling and Endothelial Function in Rats with Myocardial Infarction

    Get PDF
    Modulation of renin-angiotensin system (RAS) by angiotensin-(1ā€“7) (Ang-(1ā€“7)) is an attractive approach to combat the detrimental consequences of myocardial infarction (MI). However Ang-(1ā€“7) has limited clinical potential due to its unfavorable pharmacokinetic profile. We investigated effects of a stabilized, thioether-bridged analogue of Ang-(1ā€“7) called cyclic Ang-(1ā€“7) in rat model of myocardial infarction. Rats underwent coronary ligation or sham surgery. Two weeks thereafter infusion with 0.24 or 2.4ā€‰Ī¼g/kg/h cAng-(1ā€“7) or saline was started for 8 weeks. Thereafter, cardiac morphometric and hemodynamic variables as wells as aortic endothelial function were measured. The average infarct size was 13.8% and was not changed by cAng-(1ā€“7) treatment. MI increased heart weight and myocyte size, which was restored by cAng-(1ā€“7) to sham levels. In addition, cAng-(1ā€“7) lowered left ventricular end-diastolic pressure and improved endothelial function. The results suggest that cAng-(1ā€“7) is a promising new agent in treatment of myocardial infarction and warrant further research

    Clinical Outcomes of Intraoperative Radiation Therapy for Extremity Sarcomas

    Get PDF
    Purpose. Radiation of extremity lesions, a key component of limb-sparing therapy, presents particular challenges, with significant risks of toxicities. We sought to explore the efficacy of intraoperative radiation therapy (IORT) in the treatment of soft tissue sarcomas of the extremities. Patients. Between 1995 and 2001, 17 patients received IORT for soft tissue sarcomas of the extremities. Indications for IORT included recurrent tumors in a previously radiated field or tumors adjacent to critical structures. Results. Gross total resections were achieved in all 17 patients. Two patients experienced locoregional relapses, six patients recurred at metastatic sites, and one patient died without recurrence. Thirty-six month estimates for locoregional control, disease free survival, and overall survival were 86%, 50%, and 78%, respectively. IORT was extremely well tolerated, with no toxicities referable to IORT. Conclusions. For patients with soft tissue sarcomas of the extremities, IORT used as a boost to EBRT provides excellent local control, with limited acute toxicities

    Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments

    Get PDF
    Alternative splicing, polyadenylation of pre-messenger RNA molecules and differential promoter usage can produce a variety of transcript isoforms whose respective expression levels are regulated in time and space, thus contributing specific biological functions. However, the repertoire of mammalian alternative transcripts and their regulation are still poorly understood. Second-generation sequencing is now opening unprecedented routes to address the analysis of entire transcriptomes. Here, we developed methods that allow the prediction and quantification of alternative isoforms derived solely from exon expression levels in RNA-Seq data. These are based on an explicit statistical model and enable the prediction of alternative isoforms within or between conditions using any known gene annotation, as well as the relative quantification of known transcript structures. Applying these methods to a human RNA-Seq dataset, we validated a significant fraction of the predictions by RT-PCR. Data further showed that these predictions correlated well with information originating from junction reads. A direct comparison with exon arrays indicated improved performances of RNA-Seq over microarrays in the prediction of skipped exons. Altogether, the set of methods presented here comprehensively addresses multiple aspects of alternative isoform analysis. The software is available as an open-source R-package called Solas at http://cmb.molgen.mpg.de/2ndGenerationSequencing/Solas/

    Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP

    Get PDF
    The widespread second messenger molecule cyclic di-GMP (cdG) regulates the transition from motile and virulent lifestyles to sessile, biofilm-forming ones in a wide range of bacteria. Many pathogenic and commensal bacterial-host interactions are known to be controlled by cdG signaling. Although the biochemistry of cyclic dinucleotide metabolism is well understood, much remains to be discovered about the downstream signaling pathways that induce bacterial responses upon cdG binding. As part of our ongoing research into the role of cdG signaling in plant-associated Pseudomonas species, we carried out an affinity capture screen for cdG binding proteins in the model organism Pseudomonas fluorescens SBW25. The flagella export AAA+ ATPase FliI was identified as a result of this screen and subsequently shown to bind specifically to the cdG molecule, with a KD in the low micromolar range. The interaction between FliI and cdG appears to be very widespread. In addition to FliI homologs from diverse bacterial species, high affinity binding was also observed for the type III secretion system homolog HrcN and the type VI ATPase ClpB2. The addition of cdG was shown to inhibit FliI and HrcN ATPase activity in vitro. Finally, a combination of site-specific mutagenesis, mass spectrometry, and in silico analysis was used to predict that cdG binds to FliI in a pocket of highly conserved residues at the interface between two FliI subunits. Our results suggest a novel, fundamental role for cdG in controlling the function of multiple important bacterial export pathways, through direct allosteric control of export ATPase proteins
    • ā€¦
    corecore