13 research outputs found
Long COVID â eine Herausforderung an Public Health und Gesundheitsforschung
Im Zusammenhang mit einer vorangegangenen SARS-CoV-2-Infektion sind zahlreiche gesundheitliche Langzeitfolgen beobachtet worden, welche auch als âLong COVIDâ bezeichnet werden. Nach aktuellen Leitlinien umfasst dieser Begriff alle gesundheitlichen Beschwerden, welche direkt im Anschluss an eine akute COVID-19-Erkrankung und mindestens vier Wochen nach Symptombeginn noch vorliegen. Sollten die Beschwerden mit lĂ€ngerem Abstand im Anschluss an eine SARS-CoV-2-Infektion ĂŒber lĂ€ngere Zeit bestehen oder neu auftreten und anderweitig nicht erklĂ€rbar sein, wird dies gemÀà einer vorlĂ€ufigen WHO-Falldefinition auch als âPost-COVID-19-Syndromâ bezeichnet. Es handelt sich hierbei um eine Arbeitsdefinition, die den aktuellen Wissensstand reflektiert und zukĂŒnftig entsprechend an neu verfĂŒgbare Evidenz angepasst wird. Im vorliegenden Beitrag werden das Krankheitsbild Long COVID sowie mögliche Ursachen und Risiken vorgestellt und die aktuelle Studienlage diskutiert.Peer Reviewe
Mittelalter im Labor
Mit diesem Band prĂ€sentiert das Schwerpunktprogramm 1173 der Deutschen Forschungsgemeinschaft âIntegration und Desintegration der Kulturen im europĂ€ischen Mittelalterâ erste Ergebnisse seiner Arbeit. Von Anfang an war ihm die Aufgabe gestellt, das mittelalterliche Europa in transkultureller Perspektive und auf Wegen einer transdisziplinĂ€ren Wissenschaft zu erforschen und zu begreifen. Immer ging es darum, die disziplinĂ€r verfassten Einzelwissenschaften durch transdisziplinĂ€re Arbeit zu ergĂ€nzen. Das wissenschaftliche Anliegen des Programms ist es, das europĂ€ische Mittelalter von seinen geografischen RĂ€ndern und seinen kulturellen Differenzen her zu erforschen und zu beschreiben. Der holistischen Frage nach der Einheit Europas wird die innere Vielfalt als gegenstĂ€ndlicher Ausgangspunkt entgegengesetzt. Europa wird nicht als abgeschlossenes, kohĂ€rentes Gebilde verstanden, sondern als ein Kontinent, dessen permanente Austausch- und Wechselbeziehungen zwischen den verschiedenen Regionen und Kulturen ĂŒberhaupt erst zur Ausbildung seiner charakteristischen Merkmale gefĂŒhrt haben
Impact of infection on proteome-wide glycosylation revealed by distinct signatures for bacterial and viral pathogens
Mechanisms of infection and pathogenesis have predominantly been studied based on differential gene or protein expression. Less is known about posttranslational modifications, which are essential for protein functional diversity. We applied an innovative glycoproteomics method to study the systemic proteome-wide glycosylation in response to infection. The protein site-specific glycosylation was characterized in plasma derived from well-defined controls and patients. We found 3862 unique features, of which we identified 463 distinct intact glycopeptides, that could be mapped to more than 30 different proteins. Statistical analyses were used to derive a glycopeptide signature that enabled significant differentiation between patients with a bacterial or viral infection. Furthermore, supported by a machine learning algorithm, we demonstrated the ability to identify the causative pathogens based on the distinctive host blood plasma glycopeptide signatures. These results illustrate that glycoproteomics holds enormous potential as an innovative approach to improve the interpretation of relevant biological changes in response to infection
Relationship between molecular pathogen detection and clinical disease in febrile children across Europe: a multicentre, prospective observational study
BackgroundThe PERFORM study aimed to understand causes of febrile childhood illness by comparing molecular pathogen detection with current clinical practice.MethodsFebrile children and controls were recruited on presentation to hospital in 9 European countries 2016-2020. Each child was assigned a standardized diagnostic category based on retrospective review of local clinical and microbiological data. Subsequently, centralised molecular tests (CMTs) for 19 respiratory and 27 blood pathogens were performed.FindingsOf 4611 febrile children, 643 (14%) were classified as definite bacterial infection (DB), 491 (11%) as definite viral infection (DV), and 3477 (75%) had uncertain aetiology. 1061 controls without infection were recruited. CMTs detected blood bacteria more frequently in DB than DV cases for N. meningitidis (OR: 3.37, 95% CI: 1.92-5.99), S. pneumoniae (OR: 3.89, 95% CI: 2.07-7.59), Group A streptococcus (OR 2.73, 95% CI 1.13-6.09) and E. coli (OR 2.7, 95% CI 1.02-6.71). Respiratory viruses were more common in febrile children than controls, but only influenza A (OR 0.24, 95% CI 0.11-0.46), influenza B (OR 0.12, 95% CI 0.02-0.37) and RSV (OR 0.16, 95% CI: 0.06-0.36) were less common in DB than DV cases. Of 16 blood viruses, enterovirus (OR 0.43, 95% CI 0.23-0.72) and EBV (OR 0.71, 95% CI 0.56-0.90) were detected less often in DB than DV cases. Combined local diagnostics and CMTs respectively detected blood viruses and respiratory viruses in 360 (56%) and 161 (25%) of DB cases, and virus detection ruled-out bacterial infection poorly, with predictive values of 0.64 and 0.68 respectively.InterpretationMost febrile children cannot be conclusively defined as having bacterial or viral infection when molecular tests supplement conventional approaches. Viruses are detected in most patients with bacterial infections, and the clinical value of individual pathogen detection in determining treatment is low. New approaches are needed to help determine which febrile children require antibiotics.FundingEU Horizon 2020 grant 668303
Genomic investigations of unexplained acute hepatitis in children
Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children
Abiotic stress and plant-microbe interactions in Norway spruce
Norway spruce (Picea abies) is a dominant tree species in boreal forests with extensive ecological and economic value. Climate change is threatening these ecosystems, with rising temperatures impacting cold hardening and increasing drought stress in regions experiencing lower precipitation. Increasing atmospheric CO2 concentrations and nitrogen deposition can, in contrast, partially offset such negative effects by improving tree growth and carbon uptake. Similar to aboveground carbon fixation, carbon sequestration in boreal soils is important. Bacteria and fungi mineralize organic matter and, by making nutrients available for plants, are important for tree health. The ability of Norway spruce and the associated microbiota to adapt to climate change is of fundamental importance for ecosystem functioning and is the focus of this thesis. Norway spruce seedlings were subjected to cold or drought stress and the transcriptional response compared to known mechanisms in the model plant Arabidopsis thaliana. Analyses revealed that while there was overlap in the stress responses between species, including increased osmotic and oxidative stress tolerance, the majority of differentially expressed genes were stress-responsive only in Norway spruce. Importantly, transcription factors of the abscisic acid dependent and independent pathways were not differentially expressed or were missing homolog sequences in Norway spruce, indicating that different regulatory pathways are active in Norway spruce and suggesting that stress response has evolved differently in the species. Furthermore, differential gene expression in roots differed extensively from that of needles in response to stress and highlighted the need for separate profiling in above- and belowground tissues. In another study at the Flakaliden research site in northern Sweden, the effects of long-term nutrient addition on the microbiota associated with mature Norway spruce were tested. In agreement with earlier findings, nutrient addition improved tree growth and phylogenetic marker gene analysis on DNA of fungi and bacteria provided new insights into associated changes in plant-microbe interactions. Microbial diversity increased over time and compositional changes in nitrophilic community members indicated changes in carbon and nitrogen cycling at the plant-microbe interface, which has implications for carbon storage in boreal forest soils in the future. Follow-up RNA-based techniques largely confirmed community members from marker gene analysis. In summary, understanding of both the Norway spruce-specific responses to abiotic stress and the ability of the associated microbiota to cope with the environmental changes are essential for future productivity, survival and distribution of Norway spruce forests. Sustainability will depend on tree vitality and a more holistic understanding of tree-microbe interactions is required to model future sustainability.Gran (Picea abies) Ă€r en dominant art i boreala skogar, och har stort ekologiskt och ekonomiskt vĂ€rde. KlimatförĂ€ndringar hotar dessa ekosystem med stigande temperaturer som orsakar torkstress i regioner med lĂ„g nederbörd. FörĂ€ndringar i Ă„rstidernas lĂ€ngd pĂ„verkar ocksĂ„ de processer som vĂ€xter anvĂ€nder för att skydda sig mot frost. Ăkade halter av atmosfĂ€risk koldioxid och deposition av atmosfĂ€riskt kvĂ€ve kan Ă„ andra sidan medföra ökad tillvĂ€xt och ökat upptag av kol, vilket till viss del kan minska de negativa effekter som klimatförĂ€ndringarna orsakar. Inbindning av kol, i bĂ„de vegetation och mark, Ă€r en viktig mekanism. I marken Ă€r det bakterier och svampar som mineraliserar organiskt material och tillgĂ€ngliggör nĂ€ringsĂ€mnen för vĂ€xter, och dessa mikoorganismer Ă€r dĂ€rför viktiga för vĂ€xters vitalitet och tillvĂ€xt. Den hĂ€r avhandlingen fokuserar pĂ„ hur granen, och de mikroorganismer som lever associerade med granen, anpassar sig till klimatförĂ€ndringarna, vilket Ă€r nödvĂ€ndigt för ett fungerande ekosystem. Granplantor utsattes för kyla eller torka och granens transkriptom jĂ€mfördes med resultat frĂ„n experiment utförda i modellvĂ€xten backtrav (Arabidopsis thaliana). Gran och backtrav uppvisade till viss del liknande stressresponser med ökad tolerans mot osmotisk och oxidativ stress men majoriteten av de gener som var differentiellt uttryckta i gran var inte differentiellt uttryckta i backtrav. Detta indikerar att stressresponserna har utvecklats annorlunda i gran jĂ€mfört med backtrav. Flera vĂ€lkarakteriserade transkriptionsfaktorer som i backtrav reglerar uttrycket av gener som ingĂ„r i flera stressresponser antingen saknade motsvarigheter i gran, eller var inte differentiellt uttryckta. Detta pekar i sin tur pĂ„ att de regulatoriska nĂ€tverk som var aktiva i gran skiljer sig frĂ„n de som var aktiva i backtrav. I tillĂ€gg var genuttrycket i respons till stress i rötter och barr distinkt olika och tydliggör behovet av analys av vĂ€vnader bĂ„da ovan och under jord. I en annan studie vid Flakalidens försökspark i norra Sverige undersöktes effekterna av lĂ„ngsiktig gödsling pĂ„ de mikroorganismer som Ă€r associerade med granen. Tidigare studier har visat att tillvĂ€xten hos vuxna granar ökade vid gödsling, men studier av mikroorganimer saknas. HĂ€r analyserades fylogenetiska markörer hos DNA frĂ„n svamp och bakterier insamlade frĂ„n Flakaliden, vilket gav nya insikter i hur vĂ€xter interagerar med mikrober. Ăkad diversitet över tid och förĂ€ndrad sammansĂ€ttning av samhĂ€llet av nitrofila arter indikerar förĂ€ndringar i utbytet av kvĂ€ve och kol mellan vĂ€xt och mikroorganism, vilket tyder pĂ„ att ökad gödsling kan pĂ„verka framtida inlagring av kol i marken i den boreala skogen. Uppföljande försök med RNA-baserade tekniker bekrĂ€ftade till stor del mikrobiomets sammansĂ€ttning. VĂ„r förstĂ„else av hur granen svarar pĂ„ abiotisk stress och mikrobernas förmĂ„ga att anpassa sig till miljöförĂ€ndringarna Ă€r avgörande för granens framtid i ett hĂ„llbart skogsbruk. En mer holistisk syn pĂ„ hur trĂ€d och mikroorganismer interagerar kommer att vara nödvĂ€ndig för att Ă„stadkomma detta
Abiotic stress and plant-microbe interactions in Norway spruce
Norway spruce (Picea abies) is a dominant tree species in boreal forests with extensive ecological and economic value. Climate change is threatening these ecosystems, with rising temperatures impacting cold hardening and increasing drought stress in regions experiencing lower precipitation. Increasing atmospheric CO2 concentrations and nitrogen deposition can, in contrast, partially offset such negative effects by improving tree growth and carbon uptake. Similar to aboveground carbon fixation, carbon sequestration in boreal soils is important. Bacteria and fungi mineralize organic matter and, by making nutrients available for plants, are important for tree health. The ability of Norway spruce and the associated microbiota to adapt to climate change is of fundamental importance for ecosystem functioning and is the focus of this thesis. Norway spruce seedlings were subjected to cold or drought stress and the transcriptional response compared to known mechanisms in the model plant Arabidopsis thaliana. Analyses revealed that while there was overlap in the stress responses between species, including increased osmotic and oxidative stress tolerance, the majority of differentially expressed genes were stress-responsive only in Norway spruce. Importantly, transcription factors of the abscisic acid dependent and independent pathways were not differentially expressed or were missing homolog sequences in Norway spruce, indicating that different regulatory pathways are active in Norway spruce and suggesting that stress response has evolved differently in the species. Furthermore, differential gene expression in roots differed extensively from that of needles in response to stress and highlighted the need for separate profiling in above- and belowground tissues. In another study at the Flakaliden research site in northern Sweden, the effects of long-term nutrient addition on the microbiota associated with mature Norway spruce were tested. In agreement with earlier findings, nutrient addition improved tree growth and phylogenetic marker gene analysis on DNA of fungi and bacteria provided new insights into associated changes in plant-microbe interactions. Microbial diversity increased over time and compositional changes in nitrophilic community members indicated changes in carbon and nitrogen cycling at the plant-microbe interface, which has implications for carbon storage in boreal forest soils in the future. Follow-up RNA-based techniques largely confirmed community members from marker gene analysis. In summary, understanding of both the Norway spruce-specific responses to abiotic stress and the ability of the associated microbiota to cope with the environmental changes are essential for future productivity, survival and distribution of Norway spruce forests. Sustainability will depend on tree vitality and a more holistic understanding of tree-microbe interactions is required to model future sustainability.Gran (Picea abies) Ă€r en dominant art i boreala skogar, och har stort ekologiskt och ekonomiskt vĂ€rde. KlimatförĂ€ndringar hotar dessa ekosystem med stigande temperaturer som orsakar torkstress i regioner med lĂ„g nederbörd. FörĂ€ndringar i Ă„rstidernas lĂ€ngd pĂ„verkar ocksĂ„ de processer som vĂ€xter anvĂ€nder för att skydda sig mot frost. Ăkade halter av atmosfĂ€risk koldioxid och deposition av atmosfĂ€riskt kvĂ€ve kan Ă„ andra sidan medföra ökad tillvĂ€xt och ökat upptag av kol, vilket till viss del kan minska de negativa effekter som klimatförĂ€ndringarna orsakar. Inbindning av kol, i bĂ„de vegetation och mark, Ă€r en viktig mekanism. I marken Ă€r det bakterier och svampar som mineraliserar organiskt material och tillgĂ€ngliggör nĂ€ringsĂ€mnen för vĂ€xter, och dessa mikoorganismer Ă€r dĂ€rför viktiga för vĂ€xters vitalitet och tillvĂ€xt. Den hĂ€r avhandlingen fokuserar pĂ„ hur granen, och de mikroorganismer som lever associerade med granen, anpassar sig till klimatförĂ€ndringarna, vilket Ă€r nödvĂ€ndigt för ett fungerande ekosystem. Granplantor utsattes för kyla eller torka och granens transkriptom jĂ€mfördes med resultat frĂ„n experiment utförda i modellvĂ€xten backtrav (Arabidopsis thaliana). Gran och backtrav uppvisade till viss del liknande stressresponser med ökad tolerans mot osmotisk och oxidativ stress men majoriteten av de gener som var differentiellt uttryckta i gran var inte differentiellt uttryckta i backtrav. Detta indikerar att stressresponserna har utvecklats annorlunda i gran jĂ€mfört med backtrav. Flera vĂ€lkarakteriserade transkriptionsfaktorer som i backtrav reglerar uttrycket av gener som ingĂ„r i flera stressresponser antingen saknade motsvarigheter i gran, eller var inte differentiellt uttryckta. Detta pekar i sin tur pĂ„ att de regulatoriska nĂ€tverk som var aktiva i gran skiljer sig frĂ„n de som var aktiva i backtrav. I tillĂ€gg var genuttrycket i respons till stress i rötter och barr distinkt olika och tydliggör behovet av analys av vĂ€vnader bĂ„da ovan och under jord. I en annan studie vid Flakalidens försökspark i norra Sverige undersöktes effekterna av lĂ„ngsiktig gödsling pĂ„ de mikroorganismer som Ă€r associerade med granen. Tidigare studier har visat att tillvĂ€xten hos vuxna granar ökade vid gödsling, men studier av mikroorganimer saknas. HĂ€r analyserades fylogenetiska markörer hos DNA frĂ„n svamp och bakterier insamlade frĂ„n Flakaliden, vilket gav nya insikter i hur vĂ€xter interagerar med mikrober. Ăkad diversitet över tid och förĂ€ndrad sammansĂ€ttning av samhĂ€llet av nitrofila arter indikerar förĂ€ndringar i utbytet av kvĂ€ve och kol mellan vĂ€xt och mikroorganism, vilket tyder pĂ„ att ökad gödsling kan pĂ„verka framtida inlagring av kol i marken i den boreala skogen. Uppföljande försök med RNA-baserade tekniker bekrĂ€ftade till stor del mikrobiomets sammansĂ€ttning. VĂ„r förstĂ„else av hur granen svarar pĂ„ abiotisk stress och mikrobernas förmĂ„ga att anpassa sig till miljöförĂ€ndringarna Ă€r avgörande för granens framtid i ett hĂ„llbart skogsbruk. En mer holistisk syn pĂ„ hur trĂ€d och mikroorganismer interagerar kommer att vara nödvĂ€ndig för att Ă„stadkomma detta
Abiotic stress and plant-microbe interactions in Norway spruce
Norway spruce (Picea abies) is a dominant tree species in boreal forests with extensive ecological and economic value. Climate change is threatening these ecosystems, with rising temperatures impacting cold hardening and increasing drought stress in regions experiencing lower precipitation. Increasing atmospheric CO2 concentrations and nitrogen deposition can, in contrast, partially offset such negative effects by improving tree growth and carbon uptake. Similar to aboveground carbon fixation, carbon sequestration in boreal soils is important. Bacteria and fungi mineralize organic matter and, by making nutrients available for plants, are important for tree health. The ability of Norway spruce and the associated microbiota to adapt to climate change is of fundamental importance for ecosystem functioning and is the focus of this thesis. Norway spruce seedlings were subjected to cold or drought stress and the transcriptional response compared to known mechanisms in the model plant Arabidopsis thaliana. Analyses revealed that while there was overlap in the stress responses between species, including increased osmotic and oxidative stress tolerance, the majority of differentially expressed genes were stress-responsive only in Norway spruce. Importantly, transcription factors of the abscisic acid dependent and independent pathways were not differentially expressed or were missing homolog sequences in Norway spruce, indicating that different regulatory pathways are active in Norway spruce and suggesting that stress response has evolved differently in the species. Furthermore, differential gene expression in roots differed extensively from that of needles in response to stress and highlighted the need for separate profiling in above- and belowground tissues. In another study at the Flakaliden research site in northern Sweden, the effects of long-term nutrient addition on the microbiota associated with mature Norway spruce were tested. In agreement with earlier findings, nutrient addition improved tree growth and phylogenetic marker gene analysis on DNA of fungi and bacteria provided new insights into associated changes in plant-microbe interactions. Microbial diversity increased over time and compositional changes in nitrophilic community members indicated changes in carbon and nitrogen cycling at the plant-microbe interface, which has implications for carbon storage in boreal forest soils in the future. Follow-up RNA-based techniques largely confirmed community members from marker gene analysis. In summary, understanding of both the Norway spruce-specific responses to abiotic stress and the ability of the associated microbiota to cope with the environmental changes are essential for future productivity, survival and distribution of Norway spruce forests. Sustainability will depend on tree vitality and a more holistic understanding of tree-microbe interactions is required to model future sustainability.Gran (Picea abies) Ă€r en dominant art i boreala skogar, och har stort ekologiskt och ekonomiskt vĂ€rde. KlimatförĂ€ndringar hotar dessa ekosystem med stigande temperaturer som orsakar torkstress i regioner med lĂ„g nederbörd. FörĂ€ndringar i Ă„rstidernas lĂ€ngd pĂ„verkar ocksĂ„ de processer som vĂ€xter anvĂ€nder för att skydda sig mot frost. Ăkade halter av atmosfĂ€risk koldioxid och deposition av atmosfĂ€riskt kvĂ€ve kan Ă„ andra sidan medföra ökad tillvĂ€xt och ökat upptag av kol, vilket till viss del kan minska de negativa effekter som klimatförĂ€ndringarna orsakar. Inbindning av kol, i bĂ„de vegetation och mark, Ă€r en viktig mekanism. I marken Ă€r det bakterier och svampar som mineraliserar organiskt material och tillgĂ€ngliggör nĂ€ringsĂ€mnen för vĂ€xter, och dessa mikoorganismer Ă€r dĂ€rför viktiga för vĂ€xters vitalitet och tillvĂ€xt. Den hĂ€r avhandlingen fokuserar pĂ„ hur granen, och de mikroorganismer som lever associerade med granen, anpassar sig till klimatförĂ€ndringarna, vilket Ă€r nödvĂ€ndigt för ett fungerande ekosystem. Granplantor utsattes för kyla eller torka och granens transkriptom jĂ€mfördes med resultat frĂ„n experiment utförda i modellvĂ€xten backtrav (Arabidopsis thaliana). Gran och backtrav uppvisade till viss del liknande stressresponser med ökad tolerans mot osmotisk och oxidativ stress men majoriteten av de gener som var differentiellt uttryckta i gran var inte differentiellt uttryckta i backtrav. Detta indikerar att stressresponserna har utvecklats annorlunda i gran jĂ€mfört med backtrav. Flera vĂ€lkarakteriserade transkriptionsfaktorer som i backtrav reglerar uttrycket av gener som ingĂ„r i flera stressresponser antingen saknade motsvarigheter i gran, eller var inte differentiellt uttryckta. Detta pekar i sin tur pĂ„ att de regulatoriska nĂ€tverk som var aktiva i gran skiljer sig frĂ„n de som var aktiva i backtrav. I tillĂ€gg var genuttrycket i respons till stress i rötter och barr distinkt olika och tydliggör behovet av analys av vĂ€vnader bĂ„da ovan och under jord. I en annan studie vid Flakalidens försökspark i norra Sverige undersöktes effekterna av lĂ„ngsiktig gödsling pĂ„ de mikroorganismer som Ă€r associerade med granen. Tidigare studier har visat att tillvĂ€xten hos vuxna granar ökade vid gödsling, men studier av mikroorganimer saknas. HĂ€r analyserades fylogenetiska markörer hos DNA frĂ„n svamp och bakterier insamlade frĂ„n Flakaliden, vilket gav nya insikter i hur vĂ€xter interagerar med mikrober. Ăkad diversitet över tid och förĂ€ndrad sammansĂ€ttning av samhĂ€llet av nitrofila arter indikerar förĂ€ndringar i utbytet av kvĂ€ve och kol mellan vĂ€xt och mikroorganism, vilket tyder pĂ„ att ökad gödsling kan pĂ„verka framtida inlagring av kol i marken i den boreala skogen. Uppföljande försök med RNA-baserade tekniker bekrĂ€ftade till stor del mikrobiomets sammansĂ€ttning. VĂ„r förstĂ„else av hur granen svarar pĂ„ abiotisk stress och mikrobernas förmĂ„ga att anpassa sig till miljöförĂ€ndringarna Ă€r avgörande för granens framtid i ett hĂ„llbart skogsbruk. En mer holistisk syn pĂ„ hur trĂ€d och mikroorganismer interagerar kommer att vara nödvĂ€ndig för att Ă„stadkomma detta
Candidate regulators and target genes of drought stress in needles and roots of Norway spruce
Drought stress impacts seedling establishment, survival and whole-plant productivity. Molecular responses to drought stress have been most extensively studied in herbaceous species, mostly considering only aboveground tissues. Coniferous tree species dominate boreal forests, which are predicted to be exposed to more frequent and acute drought as a result of ongoing climate change. The associated impact at all stages of the forest tree life cycle is expected to have large-scale ecological and economic impacts. However, the molecular response to drought has not been comprehensively profiled for coniferous species. We assayed the physiological and transcriptional response of Picea abies (L.) H. Karst seedling needles and roots after exposure to mild and severe drought. Shoots and needles showed an extensive reversible plasticity for physiological measures indicative of drought-response mechanisms, including changes in stomatal conductance (gs), shoot water potential and abscisic acid (ABA). In both tissues, the most commonly observed expression profiles in response to drought were highly correlated with the ABA levels. Still, root and needle transcriptional responses contrasted, with extensive root-specific down-regulation of growth. Comparison between previously characterized Arabidopsis thaliana L. drought-response genes and P. abies revealed both conservation and divergence of transcriptional response to drought. In P. abies, transcription factors belonging to the ABA responsive element(ABRE) binding/ABRE binding factors ABA-dependent pathway had a more limited role. These results highlight the importance of profiling both above- and belowground tissues, and provide a comprehensive framework to advance the understanding of the drought response of P. abies. The results demonstrate that a short-term, severe drought induces severe physiological responses coupled to extensive transcriptome modulation and highlight the susceptibility of Norway spruce seedlings to such drought events
Candidate regulators and target genes of drought stress in needles and roots of Norway spruce
Drought stress impacts seedling establishment, survival and whole-plant productivity. Molecular responses to drought stress have been most extensively studied in herbaceous species, mostly considering only aboveground tissues. Coniferous tree species dominate boreal forests, which are predicted to be exposed to more frequent and acute drought as a result of ongoing climate change. The associated impact at all stages of the forest tree life cycle is expected to have large-scale ecological and economic impacts. However, the molecular response to drought has not been comprehensively profiled for coniferous species. We assayed the physiological and transcriptional response of Picea abies (L.) H. Karst seedling needles and roots after exposure to mild and severe drought. Shoots and needles showed an extensive reversible plasticity for physiological measures indicative of drought-response mechanisms, including changes in stomatal conductance (gs), shoot water potential and abscisic acid (ABA). In both tissues, the most commonly observed expression profiles in response to drought were highly correlated with the ABA levels. Still, root and needle transcriptional responses contrasted, with extensive root-specific down-regulation of growth. Comparison between previously characterized Arabidopsis thaliana L. drought-response genes and P. abies revealed both conservation and divergence of transcriptional response to drought. In P. abies, transcription factors belonging to the ABA responsive element(ABRE) binding/ABRE binding factors ABA-dependent pathway had a more limited role. These results highlight the importance of profiling both above- and belowground tissues, and provide a comprehensive framework to advance the understanding of the drought response of P. abies. The results demonstrate that a short-term, severe drought induces severe physiological responses coupled to extensive transcriptome modulation and highlight the susceptibility of Norway spruce seedlings to such drought events