21,511 research outputs found
Relativistic Klein-Gordon-Maxwell multistream model for quantum plasmas
A multistream model for spinless electrons in a relativistic quantum plasma
is introduced by means of a suitable fluid-like version of the
Klein-Gordon-Maxwell system. The one and two-stream cases are treated in
detail. A new linear instability condition for two-stream quantum plasmas is
obtained, generalizing the previously known non-relativistic results. In both
the one and two-stream cases, steady-state solutions reduce the model to a set
of coupled nonlinear ordinary differential equations, which can be numerically
solved, yielding a manifold of nonlinear periodic and soliton structures. The
validity conditions for the applicability of the model are addressed
The suppression of superconductivity in MgCNi3 by Ni-site doping
The effects of partial substitution of Cu and Co for Ni in the intermetallic
perovskite superconductor MgCNi3 are reported. Calculation of the expected
electronic density of states suggests that electron (Cu) and hole (Co) doping
should have different effects. For MgCNi3-xCux, solubility of Cu is limited to
approximately 3% (x = 0.1), and Tc decreases systematically from 7K to 6K. For
MgCNi3-xCox, solubility of Co is much more extensive, but bulk
superconductivity disappears for Co doping of 1% (x = 0.03). No signature of
long range magnetic ordering is observed in the magnetic susceptibility of the
Co doped material.Comment: submitted, Solid State Communication
BCS theory of nodal superconductors
This course has a dual purpose. First we review the successes of the
weak-coupling BCS theory in describing new classes of superconductors
discovered since 1979. They include the heavy-fermion superconductors, high-Tc
cuprate superconductors, organic superconductors, Sr2RuO4, etc. Second, we
present the quasiclassical approximation introduced by Volovik, which we extend
to describe the thermodynamics and the thermal conductivity of the vortex state
in nodal superconductors. This approach provides the most powerful tool to
identify the symmetry of the energy gap function Delta(k) in these new
superconductors.Comment: 31 pages, 33 figure
New World of Gossamer Superconductivity
Since the discovery of the high-T cuprate superconductor
LaBaCuO in 1986 by Bednorz and M\"{u}ller, controversy regarding
the nature or origin of this remarkable superconductivity has continued.
However, d-wave superconductivity in the hole-doped cuprates, arising due to
the anti-paramagnon exchange, was established around 1994. More recently we
have shown that the mean field theory, like the BCS theory of superconductivity
and Landau's Fermi liquid theory are adequate to describe the cuprates. The
keys for this development are the facts that a)the pseudogap phase is d-wave
density wave (dDW) and that the high-T cuprate superconductivity is
gossamer (i.e. it exists in the presence of dDW).Comment: 6 pages, 4 figure
Impurity assisted nanoscale localization of plasmonic excitations in graphene
The plasmon modes of pristine and impurity doped graphene are calculated,
using a real-space theory which determines the non-local dielectric response
within the random phase approximation. A full diagonalization of the
polarization operator is performed, allowing the extraction of all its poles.
It is demonstrated how impurities induce the formation of localized modes which
are absent in pristine graphene. The dependence of the spatial modulations over
few lattice sites and frequencies of the localized plasmons on the electronic
filling and impurity strength is discussed. Furthermore, it is shown that the
chemical potential and impurity strength can be tuned to control target
features of the localized modes. These predictions can be tested by scanning
tunneling microscopy experiments.Comment: 5 pages, 4 figure
The uniting of Europe and the foundation of EU studies: revisiting the neofunctionalism of Ernst B. Haas
This article suggests that the neofunctionalist theoretical legacy left by Ernst B. Haas is somewhat richer and more prescient than many contemporary discussants allow. The article develops an argument for routine and detailed re-reading of the corpus of neofunctionalist work (and that of Haas in particular), not only to disabuse contemporary students and scholars of the normally static and stylized reading that discussion of the theory provokes, but also to suggest that the conceptual repertoire of neofunctionalism is able to speak directly to current EU studies and comparative regionalism. Neofunctionalism is situated in its social scientific context before the theory's supposed erroneous reliance on the concept of 'spillover' is discussed critically. A case is then made for viewing Haas's neofunctionalism as a dynamic theory that not only corresponded to established social scientific norms, but did so in ways that were consistent with disciplinary openness and pluralism
Quantum Antiferromagnetism in Quasicrystals
The antiferromagnetic Heisenberg model is studied on a two-dimensional
bipartite quasiperiodic lattice. The distribution of local staggered magnetic
moments is determined on finite square approximants with up to 1393 sites,
using the Stochastic Series Expansion Quantum Monte Carlo method. A non-trivial
inhomogeneous ground state is found. For a given local coordination number, the
values of the magnetic moments are spread out, reflecting the fact that no two
sites in a quasicrystal are identical. A hierarchical structure in the values
of the moments is observed which arises from the self-similarity of the
quasiperiodic lattice. Furthermore, the computed spin structure factor shows
antiferromagnetic modulations that can be measured in neutron scattering and
nuclear magnetic resonance experiments.
This generic model is a first step towards understanding magnetic
quasicrystals such as the recently discovered Zn-Mg-Ho icosahedral structure.Comment: RevTex, 4 pages with 5 figure
Generalized Hamiltonian structures for Ermakov systems
We construct Poisson structures for Ermakov systems, using the Ermakov
invariant as the Hamiltonian. Two classes of Poisson structures are obtained,
one of them degenerate, in which case we derive the Casimir functions. In some
situations, the existence of Casimir functions can give rise to superintegrable
Ermakov systems. Finally, we characterize the cases where linearization of the
equations of motion is possible
- âŚ