3 research outputs found
Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE
Triple-wavelength lidar observations of the depolarization ratio and the backscatter coefficient of marine aerosol as a function of relative humidity (RH) are presented with a 5min time resolution. The measurements were performed at Barbados (13°N, 59°W) during the Saharan Aerosol Long-range Transport and Aerosol-Cloud interaction Experiment (SALTRACE) winter campaign in February 2014. The phase transition from spherical sea salt particles to cubic-like sea salt crystals was observed with a polarization lidar. The radiosonde and water-vapor Raman lidar observations show a drop in RH below 50% in the marine aerosol layer simultaneously with a strong increase in particle linear depolarization ratio, which reaches values up to 0.12±0.08 (at 355nm), 0.15±0.03 (at 532nm), and 0.10±0.01 (at 1064nm). The lidar ratio (extinction-to-backscatter ratio) increased from 19 and 23sr for spherical sea salt particles to 27 and 25sr (at 355 and 532nm, respectively) for cubic-like particle ensembles. Furthermore the scattering enhancement due to hygroscopic growth of the marine aerosol particles under atmospheric conditions was measured. Extinction enhancement factors from 40 to 80% RH of 1.94±0.94 at 355nm, 3.70±1.14 at 532nm, and 5.37±1.66 at 1064nm were found. The enhanced depolarization ratios and lidar ratios were compared to modeling studies of cubic sea salt particles.© Author(s) 201
Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014
Triple-wavelength polarization lidar measurements in Saharan dust layers were performed at Barbados (13.1°N, 59.6°W), 5000–8000km west of the Saharan dust sources, in the framework of the Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE-1, June–July 2013, SALTRACE-3, June–July 2014). Three case studies are discussed. High quality was achieved by comparing the dust linear depolarization ratio profiles measured at 355, 532, and 1064nm with respective dual-wavelength (355, 532nm) depolarization ratio profiles measured with a reference lidar. A unique case of long-range transported dust over more than 12000km is presented. Saharan dust plumes crossing Barbados were measured with an airborne triple-wavelength polarization lidar over Missouri in the midwestern United States 7 days later. Similar dust optical properties and depolarization features were observed over both sites indicating almost unchanged dust properties within this 1 week of travel from the Caribbean to the United States. The main results of the triple-wavelength polarization lidar observations in the Caribbean in the summer seasons of 2013 and 2014 are summarized. On average, the particle linear depolarization ratios for aged Saharan dust were found to be 0.252±0.030 at 355nm, 0.280±0.020 at 532nm, and 0.225±0.022 at 1064nm after approximately 1 week of transport over the tropical Atlantic. Based on published simulation studies we present an attempt to explain the spectral features of the depolarization ratio of irregularly shaped mineral dust particles, and conclude that most of the irregularly shaped coarse-mode dust particles (particles with diameters > 1µm) have sizes around 1.5–2µm. The SALTRACE results are also set into the context of the SAMUM-1 (Morocco, 2006) and SAMUM-2 (Cabo Verde, 2008) depolarization ratio studies. Again, only minor changes in the dust depolarization characteristics were observed on the way from the Saharan dust sources towards the Caribbean.© Author(s) 201
Particle settling and vertical mixing in the Saharan Air Layer as seen from an integrated model, lidar, and in situ perspective
Long-range transport of aerosol in the Saharan Air Layer (SAL) across the Atlantic plays an important role for weather, climate, and ocean fertilization. However, processes occurring within the SAL and their effects on aerosol properties are still unclear. In this work we study particle settling and vertical mixing within the SAL based on measured and modeled vertical aerosol profiles in the upper 1km of the transported SAL. We use ground-based lidar measurements and airborne particle counter measurements over the western Atlantic, collected during the SALTRACE campaign, as well as space-based CALIOP lidar measurements from Africa to the western Atlantic in the summer season. In our model we take account of the optical properties and the Stokes gravitational settling of irregularly shaped Saharan dust particles.
We test two hypotheses about the occurrence of vertical mixing within the SAL over the Atlantic to explain the aerosol profiles observed by the lidars and the particle counter. Our first hypothesis (H1) assumes that no mixing occurs in the SAL leading to a settling-induced separation of particle sizes. The second hypothesis (H2) assumes that vertical mixing occurs in the SAL allowing large super-micron dust particles to stay airborne longer than without mixing.
The uncertainties of the particle linear depolarization ratio (δl) profiles measured by the ground-based lidars are comparable to the modeled differences between H1 and H2 and do not allow us to conclude which hypothesis fits better. The SALTRACE in situ data on size-resolved particle number concentrations show a presence of large particles near the SAL top that is inconsistent with H1. The analysis of the CALIOP measurements also reveals that the average δl profile over the western Atlantic is inconsistent with H1. Furthermore, it was found that the average δl profile in the upper 1km of the SAL does not change along its transport path over the Atlantic. These findings give evidence that vertical mixing within the SAL is a common phenomenon with significant consequences for the evolution of the size distribution of super-micron dust particles during transport over the Atlantic. Further research is needed to precisely characterize the processes that are relevant for this phenomenon.© Author(s) 201