33 research outputs found
Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer
PURPOSE:The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. EXPERIMENTAL DESIGN: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (<10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB).RESULTS:In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. CONCLUSIONS: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC.</p
Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer
PURPOSE:The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. EXPERIMENTAL DESIGN: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (<10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB).RESULTS:In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. CONCLUSIONS: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC.</p
Patient-Derived Organoid Models of Human Neuroendocrine Carcinoma
Gastroenteropancreatic neuroendocrine carcinoma (GEP-NEC) is a poorly understood disease with limited treatment options. A better understanding of this disease would greatly benefit from the availability of representative preclinical models. Here, we present the potential of tumor organoids, three-dimensional cultures of tumor cells, to model GEP-NEC. We established three GEP-NEC organoid lines, originating from the stomach and colon, and characterized them using DNA sequencing and immunohistochemistry. Organoids largely resembled the original tumor in expression of synaptophysin, chromogranin and Ki-67. Models derived from tumors containing both neuroendocrine and non-neuroendocrine components were at risk of overgrowth by non-neuroendocrine tumor cells. Organoids were derived from patients treated with cisplatin and everolimus and for the three patients studied, organoid chemosensitivity paralleled clinical response. We demonstrate the feasibility of establishing NEC organoid lines and their potential applications. Organoid culture has the potential to greatly extend the repertoire of preclinical models for GEP-NEC, supporting drug development for this difficult-to-treat tumor type
Multi-omic analysis identifies hypoalbuminemia as independent biomarker of poor outcome upon PD-1 blockade in metastatic melanoma
We evaluated the prognostic value of hypoalbuminemia in context of various biomarkers at baseline, including clinical, genomic, transcriptomic, and blood-based markers, in patients with metastatic melanoma treated with anti-PD-1 monotherapy or anti-PD-1/anti-CTLA-4 combination therapy (n = 178). An independent validation cohort (n = 79) was used to validate the performance of hypoalbuminemia compared to serum LDH (lactate dehydrogenase) levels. Pre-treatment hypoalbuminemia emerged as the strongest predictor of poor outcome for both OS (HR = 4.01, 95% CI 2.10–7.67, Cox P = 2.63e−05) and PFS (HR = 3.72, 95% CI 2.06–6.73, Cox P = 1.38e−05) in univariate analysis. In multivariate analysis, the association of hypoalbuminemia with PFS was independent of serum LDH, IFN-γ signature expression, TMB, age, ECOG PS, treatment line, treatment type (combination or monotherapy), brain and liver metastasis (HR = 2.76, 95% CI 1.24–6.13, Cox P = 0.0131). Our validation cohort confirmed the prognostic power of hypoalbuminemia for OS (HR = 1.98, 95% CI 1.16–3.38; Cox P = 0.0127) and was complementary to serum LDH in analyses for both OS (LDH-adjusted HR = 2.12, 95% CI 1.2–3.72, Cox P = 0.00925) and PFS (LDH-adjusted HR = 1.91, 95% CI 1.08–3.38, Cox P = 0.0261). In conclusion, pretreatment hypoalbuminemia was a powerful predictor of outcome in ICI in melanoma and showed remarkable complementarity to previously established biomarkers, including high LDH.</p
Combining Genomic Biomarkers to Guide Immunotherapy in Non-Small Cell Lung Cancer
Purpose: The clinical value of STK11, KEAP1, and EGFR alterations for guiding immune checkpoint blockade (ICB) therapy in non-small cell lung cancer (NSCLC) remains controversial, as some patients with these proposed resistance biomarkers show durable ICB responses. More specific combinatorial biomarker approaches are urgently needed for this disease. Experimental Design: To develop a combinatorial biomarker strategy with increased specificity for ICB unresponsiveness in NSCLC, we performed a comprehensive analysis of 254 patients with NSCLC treated with ligand programmed death-ligand 1 (PD-L1) blockade monotherapy, including a discovery cohort of 75 patients subjected to whole-genome sequencing (WGS), and an independent validation cohort of 169 patients subjected to tumor-normal large panel sequencing. The specificity of STK11/KEAP1/EGFR alterations for ICB unresponsiveness was assessed in the contexts of a low (<10 muts/Mb) or high (≥10 muts/Mb) tumor mutational burden (TMB). Results: In low TMB cases, STK11/KEAP1/EGFR alterations were highly specific biomarkers for ICB resistance, with 0/15 (0.0%) and 1/34 (2.9%) biomarker-positive patients showing treatment benefit in the discovery and validation cohorts, respectively. This contrasted with high TMB cases, where 11/13 (85%) and 15/34 (44%) patients with at least one STK11/ KEAP1/EGFR alteration showed durable treatment benefit in the discovery and validation cohorts, respectively. These findings were supported by analyses of progression-free survival and overall survival. Conclusions: The unexpected ICB responses in patients carrying resistance biomarkers in STK11, KEAP1, and EGFR were almost exclusively observed in patients with a high TMB. Considering these alterations in context, the TMB offered a highly specific combinatorial biomarker strategy for limiting overtreatment in NSCLC
Multi-omic analysis identifies hypoalbuminemia as independent biomarker of poor outcome upon PD-1 blockade in metastatic melanoma
We evaluated the prognostic value of hypoalbuminemia in context of various biomarkers at baseline, including clinical, genomic, transcriptomic, and blood-based markers, in patients with metastatic melanoma treated with anti-PD-1 monotherapy or anti-PD-1/anti-CTLA-4 combination therapy (n = 178). An independent validation cohort (n = 79) was used to validate the performance of hypoalbuminemia compared to serum LDH (lactate dehydrogenase) levels. Pre-treatment hypoalbuminemia emerged as the strongest predictor of poor outcome for both OS (HR = 4.01, 95% CI 2.10–7.67, Cox P = 2.63e−05) and PFS (HR = 3.72, 95% CI 2.06–6.73, Cox P = 1.38e−05) in univariate analysis. In multivariate analysis, the association of hypoalbuminemia with PFS was independent of serum LDH, IFN-γ signature expression, TMB, age, ECOG PS, treatment line, treatment type (combination or monotherapy), brain and liver metastasis (HR = 2.76, 95% CI 1.24–6.13, Cox P = 0.0131). Our validation cohort confirmed the prognostic power of hypoalbuminemia for OS (HR = 1.98, 95% CI 1.16–3.38; Cox P = 0.0127) and was complementary to serum LDH in analyses for both OS (LDH-adjusted HR = 2.12, 95% CI 1.2–3.72, Cox P = 0.00925) and PFS (LDH-adjusted HR = 1.91, 95% CI 1.08–3.38, Cox P = 0.0261). In conclusion, pretreatment hypoalbuminemia was a powerful predictor of outcome in ICI in melanoma and showed remarkable complementarity to previously established biomarkers, including high LDH.</p
A pan-cancer analysis of the microbiome in metastatic cancer
Microbial communities are resident to multiple niches of the human body and are important modulators of the host immune system and responses to anticancer therapies. Recent studies have shown that complex microbial communities are present within primary tumors. To investigate the presence and relevance of the microbiome in metastases, we integrated mapping and assembly-based metagenomics, genomics, transcriptomics, and clinical data of 4,160 metastatic tumor biopsies. We identified organ-specific tropisms of microbes, enrichments of anaerobic bacteria in hypoxic tumors, associations between microbial diversity and tumor-infiltrating neutrophils, and the association of Fusobacterium with resistance to immune checkpoint blockade (ICB) in lung cancer. Furthermore, longitudinal tumor sampling revealed temporal evolution of the microbial communities and identified bacteria depleted upon ICB. Together, we generated a pan-cancer resource of the metastatic tumor microbiome that may contribute to advancing treatment strategies
Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment
Purpose: Patients with rare cancers (incidence less than 6 cases per 100,000 persons per year) commonly have less treatment opportunities and are understudied at the level of genomic targets. We hypothesized that patients with rare cancer benefit from approved anticancer drugs outside their label similar to common cancers. Experimental Design: In the Drug Rediscovery Protocol (DRUP), patients with therapy-refractory metastatic cancers harboring an actionable molecular profile are matched to FDA/European Medicines Agency–approved targeted therapy or immunotherapy. Patients are enrolled in parallel cohorts based on the histologic tumor type, molecular profile and study drug. Primary endpoint is clinical benefit (complete response, partial response, stable disease ≥ 16 weeks). Results: Of 1,145 submitted cases, 500 patients, including 164 patients with rare cancers, started one of the 25 available drugs and were evaluable for treatment outcome. The overall clinical benefit rate was 33% in both the rare cancer and nonrare cancer subgroup. Inactivating alterations of CDKN2A and activating BRAF aberrations were overrepresented in patients with rare cancer compared with nonrare cancers, resulting in more matches to CDK4/6 inhibitors (14% vs. 4%; P ≤ 0.001) or BRAF inhibitors (9% vs. 1%; P ≤ 0.001). Patients with rare cancer treated with small-molecule inhibitors targeting BRAF experienced higher rates of clinical benefit (75%) than the nonrare cancer subgroup. Conclusions: Comprehensive molecular testing in patients with rare cancers may identify treatment opportunities and clinical benefit similar to patients with common cancers. Our findings highlight the importance of access to broad molecular diagnostics to ensure equal treatment opportunities for all patients with cancer
Notas sobre la sostenibilidad de la deuda pública en Venezuela
En el presente trabajo se lleva a cabo una evaluación de la sostenibilidad de la deuda pública en Venezuela. En la primera parte del estudio se presenta un breve bosquejo teórico de los modelos para evaluar la sostenibilidad de la deuda pública que aparece reflejado en la literatura económica. Asimismo, se presenta la evolución de los indicadores de sostenibilidad de la deuda pública, así como una comparación internacional de los niveles de deuda de Venezuela en comparación con otros países de la región. Se observa que aunque los indicadores tradicionales de deuda pública no indican un peso importante de la deuda sobre la economía nacional, al estudiar la trayectoria de endeudamiento actual, se concluye que el endeudamiento público no es sostenible en el tiempo
Multi-omic analysis identifies hypoalbuminemia as independent biomarker of poor outcome upon PD-1 blockade in metastatic melanoma
We evaluated the prognostic value of hypoalbuminemia in context of various biomarkers at baseline, including clinical, genomic, transcriptomic, and blood-based markers, in patients with metastatic melanoma treated with anti-PD-1 monotherapy or anti-PD-1/anti-CTLA-4 combination therapy (n = 178). An independent validation cohort (n = 79) was used to validate the performance of hypoalbuminemia compared to serum LDH (lactate dehydrogenase) levels. Pre-treatment hypoalbuminemia emerged as the strongest predictor of poor outcome for both OS (HR = 4.01, 95% CI 2.10-7.67, Cox P = 2.63e-05) and PFS (HR = 3.72, 95% CI 2.06-6.73, Cox P = 1.38e-05) in univariate analysis. In multivariate analysis, the association of hypoalbuminemia with PFS was independent of serum LDH, IFN-γ signature expression, TMB, age, ECOG PS, treatment line, treatment type (combination or monotherapy), brain and liver metastasis (HR = 2.76, 95% CI 1.24-6.13, Cox P = 0.0131). Our validation cohort confirmed the prognostic power of hypoalbuminemia for OS (HR = 1.98, 95% CI 1.16-3.38; Cox P = 0.0127) and was complementary to serum LDH in analyses for both OS (LDH-adjusted HR = 2.12, 95% CI 1.2-3.72, Cox P = 0.00925) and PFS (LDH-adjusted HR = 1.91, 95% CI 1.08-3.38, Cox P = 0.0261). In conclusion, pretreatment hypoalbuminemia was a powerful predictor of outcome in ICI in melanoma and showed remarkable complementarity to previously established biomarkers, including high LDH