18 research outputs found
Long-term evolution of human seasonal influenza virus A(H3N2) is associated with an increase in polymerase complex activity
Since the influenza pandemic in 1968, influenza A(H3N2) viruses have become endemic. In this state, H3N2 viruses continuously evolve to overcome immune pressure as a result of prior infection or vaccination, as is evident from the accumulation of mutations in the surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, phylogenetic studies have also demonstrated ongoing evolution in the influenza A(H3N2) virus RNA polymerase complex genes. The RNA polymerase complex of seasonal influenza A(H3N2) viruses produces mRNA for viral protein synthesis and replicates the negative sense viral RNA genome (vRNA) through a positive sense complementary RNA intermediate (cRNA). Presently, the consequences and selection pressures driving the evolution of the polymerase complex remain largely unknown. Here, we characterize the RNA polymerase complex of seasonal influenza A(H3N2) viruses representative of nearly 50âyears of influenza A(H3N2) virus evolution. The H3N2 polymerase complex is a reassortment of human and avian influenza virus genes. We show that since 1968, influenza A(H3N2) viruses have increased the transcriptional activity of the polymerase complex while retaining a close balance between mRNA, vRNA, and cRNA levels. Interestingly, the increased polymerase complex activity did not result in increased replicative ability on differentiated human airway epithelial (HAE) cells. We hypothesize that the evolutionary increase in polymerase complex activity of influenza A(H3N2) viruses may compensate for the reduced HA receptor binding and avidity that is the result of the antigenic evolution of influenza A(H3N2) viruses
MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition
OBJECTIVE: To reveal possible differences in whole brain topology of epileptic glioma patients, being low-grade glioma (LGG) and high-grade glioma (HGG) patients. We studied functional networks in these patients and compared them to those in epilepsy patients with non-glial lesions (NGL) and healthy controls. Finally, we related network characteristics to seizure frequency and cognitive performance within patient groups. METHODS: We constructed functional networks from pre-surgical resting-state magnetoencephalography (MEG) recordings of 13 LGG patients, 12 HGG patients, 10 NGL patients, and 36 healthy controls. Normalized clustering coefficient and average shortest path length as well as modular structure and network synchronizability were computed for each group. Cognitive performance was assessed in a subset of 11 LGG and 10 HGG patients. RESULTS: LGG patients showed decreased network synchronizability and decreased global integration compared to healthy controls in the theta frequency range (4-8 Hz), similar to NGL patients. HGG patients' networks did not significantly differ from those in controls. Network characteristics correlated with clinical presentation regarding seizure frequency in LGG patients, and with poorer cognitive performance in both LGG and HGG glioma patients. CONCLUSION: Lesion histology partly determines differences in functional networks in glioma patients suffering from epilepsy. We suggest that differences between LGG and HGG patients' networks are explained by differences in plasticity, guided by the particular lesional growth pattern. Interestingly, decreased synchronizability and decreased global integration in the theta band seem to make LGG and NGL patients more prone to the occurrence of seizures and cognitive decline
Global urban environmental change drives adaptation in white clover
Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale
Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE*3-Leiden.CETP mice
OBJECTIVE: In addition to lowering low-density lipoprotein (LDL)-cholesterol, statins modestly increase high-density lipoprotein (HDL)-cholesterol in humans and decrease cholesteryl ester transfer protein (CETP) mass and activity. Our aim was to determine whether the increase in HDL depends on CETP expression. METHODS AND RESULTS: APOE*3-Leiden (E3L) mice, with a human-like lipoprotein profile and a human-like responsiveness to statin treatment, were crossbred with mice expressing human CETP under control of its natural flanking regions resulting in E3L.CETP mice. E3L and E3L.CETP mice were fed a Western-type diet with or without atorvastatin. Atorvastatin (0.01% in the diet) reduced plasma cholesterol in both E3L and E3L.CETP mice (-26 and -33%, P<0.05), mainly in VLDL, but increased HDL-cholesterol only in E3L.CETP mice (+52%). Hepatic mRNA expression levels of genes involved in HDL metabolism, such as phospholipid transfer protein (Pltp), ATP-binding cassette transporter A1 (Abca1), scavenger receptor class B type I (Sr-b1), and apolipoprotein AI (Apoa1), were not differently affected by atorvastatin in E3L.CETP mice as compared to E3L mice. However, in E3L.CETP mice, atorvastatin down-regulated the hepatic CETP mRNA expression (-57%; P<0.01) as well as the total CETP level (-29%) and cholesteryl esters (CE) transfer activity (-36%; P<0.05) in plasma. CONCLUSIONS: Atorvastatin increases HDL-cholesterol in E3L.CETP mice by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression and a reduced plasma (V)LDL pool
Antibody and Local Cytokine Response to Respiratory Syncytial Virus Infection in Community-Dwelling Older Adults.
Respiratory syncytial virus (RSV) is increasingly recognized for causing severe morbidity and mortality in older adults, but there are few studies on the RSV-induced immune response in this population. Information on the immunological processes at play during RSV infection in specific risk groups is essential for the rational and targeted design of novel vaccines and therapeutics. Here, we assessed the antibody and local cytokine response to RSV infection in community-dwelling older adults (â„60âyears of age). During three winters, serum and nasopharyngeal swab samples were collected from study participants during acute respiratory infection and recovery. RSV IgG enzyme-linked immunosorbent assays (ELISA) and virus neutralization assays were performed on serum samples from RSV-infected individuals (nâ=â41) and controls (nâ=â563 and nâ=â197, respectively). Nasal RSV IgA and cytokine concentrations were determined using multiplex immunoassays in a subset of participants. An in vitro model of differentiated primary bronchial epithelial cells was used to assess RSV-induced cytokine responses over time. A statistically significant increase in serum neutralization titers and IgG concentrations was observed in RSV-infected participants compared to controls. During acute RSV infection, a statistically significant local upregulation of beta interferon (IFN-ÎČ), IFN-λ1, IFN-Îł, interleukin 1ÎČ (IL-1ÎČ), tumor necrosis factor alpha (TNF-α), IL-6, IL-10, CXCL8, and CXCL10 was found. IFN-ÎČ, IFN-λ1, CXCL8, and CXCL10 were also upregulated in the epithelial model upon RSV infection. In conclusion, this study provides novel insights into the basic immune response to RSV infection in an important and understudied risk population, providing leads for future studies that are essential for the prevention and treatment of severe RSV disease in older adults.IMPORTANCE Respiratory syncytial virus (RSV) can cause severe morbidity and mortality in certain risk groups, especially infants and older adults. Currently no (prophylactic) treatment is available, except for a partially effective yet highly expensive monoclonal antibody. RSV therefore remains a major public health concern. To allow targeted development of novel vaccines and therapeutics, it is of great importance to understand the immunological mechanisms that underlie (protection from) severe disease in specific risk populations. Since most RSV-related studies focus on infants, there are only very limited data available concerning the response to RSV in the elderly population. Therefore, in this study, RSV-induced antibody responses and local cytokine secretion were assessed in community-dwelling older adults. These data provide novel insights that will benefit ongoing efforts to design safe and effective prevention and treatment strategies for RSV in an understudied risk group
The road ahead in clinical network neuroscience
Clinical network neuroscience, the study of brain network topology in neurological and psychiatric diseases, has become a mainstay field within clinical neuroscience. Being a multidisciplinary group of clinical network neuroscience experts based in The Netherlands, we often discuss the current state of the art and possible avenues for future investigations. These discussions revolve around questions like âHow do dynamic processes alter the underlying structural network?â and âCan we use network neuroscience for disease classification?â This opinion paper is an incomplete overview of these discussions and expands on ten questions that may potentially advance the field. By no means intended as a review of the current state of the field, it is instead meant as a conversation starter and source of inspiration to others
Ruling out Pulmonary Embolism in Patients with (Suspected) COVID-19-A Prospective Cohort Study
BackgroundâDiagnostic strategies for suspected pulmonary embolism (PE) have not been prospectively evaluated in COVID-19 patients.
MethodsâProspective, multicenter, outcome study in 707 patients with both (suspected) COVID-19 and suspected PE in 14 hospitals. Patients on chronic anticoagulant therapy were excluded. Informed consent was obtained by opt-out approach. Patients were managed by validated diagnostic strategies for suspected PE. We evaluated the safety (3-month failure rate) and efficiency (number of computed tomography pulmonary angiographies [CTPAs] avoided) of the applied strategies.
ResultsâOverall PE prevalence was 28%. YEARS was applied in 36%, Wells rule in 4.2%, and âCTPA onlyâ in 52%; 7.4% was not tested because of hemodynamic or respiratory instability. Within YEARS, PE was considered excluded without CTPA in 29%, of which one patient developed nonfatal PE during follow-up (failure rate 1.4%, 95% CI 0.04â7.8). One-hundred seventeen patients (46%) managed according to YEARS had a negative CTPA, of whom 10 were diagnosed with nonfatal venous thromboembolism (VTE) during follow-up (failure rate 8.8%, 95% CI 4.3â16). In patients managed by CTPA only, 66% had an initial negative CTPA, of whom eight patients were diagnosed with a nonfatal VTE during follow-up (failure rate 3.6%, 95% CI 1.6â7.0).
ConclusionâOur results underline the applicability of YEARS in (suspected) COVID-19 patients with suspected PE. CTPA could be avoided in 29% of patients managed by YEARS, with a low failure rate. The failure rate after a negative CTPA, used as a sole test or within YEARS, was non-negligible and reflects the high thrombotic risk in these patients, warranting ongoing vigilance