2,618 research outputs found

    Fluctuations and Ergodicity of the Form Factor of Quantum Propagators and Random Unitary Matrices

    Full text link
    We consider the spectral form factor of random unitary matrices as well as of Floquet matrices of kicked tops. For a typical matrix the time dependence of the form factor looks erratic; only after a local time average over a suitably large time window does a systematic time dependence become manifest. For matrices drawn from the circular unitary ensemble we prove ergodicity: In the limits of large matrix dimension and large time window the local time average has vanishingly small ensemble fluctuations and may be identified with the ensemble average. By numerically diagonalizing Floquet matrices of kicked tops with a globally chaotic classical limit we find the same ergodicity. As a byproduct we find that the traces of random matrices from the circular ensembles behave very much like independent Gaussian random numbers. Again, Floquet matrices of chaotic tops share that universal behavior. It becomes clear that the form factor of chaotic dynamical systems can be fully faithful to random-matrix theory, not only in its locally time-averaged systematic time dependence but also in its fluctuations.Comment: 12 pages, RevTEX, 4 figures in eps forma

    Field quantization for chaotic resonators with overlapping modes

    Get PDF
    Feshbach's projector technique is employed to quantize the electromagnetic field in optical resonators with an arbitray number of escape channels. We find spectrally overlapping resonator modes coupled due to the damping and noise inflicted by the external radiation field. For wave chaotic resonators the mode dynamics is determined by a non--Hermitean random matrix. Upon including an amplifying medium, our dynamics of open-resonator modes may serve as a starting point for a quantum theory of random lasing.Comment: 4 pages, 1 figur

    Periodic-Orbit Theory of Level Correlations

    Full text link
    We present a semiclassical explanation of the so-called Bohigas-Giannoni-Schmit conjecture which asserts universality of spectral fluctuations in chaotic dynamics. We work with a generating function whose semiclassical limit is determined by quadruplets of sets of periodic orbits. The asymptotic expansions of both the non-oscillatory and the oscillatory part of the universal spectral correlator are obtained. Borel summation of the series reproduces the exact correlator of random-matrix theory.Comment: 4 pages, 1 figure (+ web-only appendix with 2 pages, 1 figure

    Overdamping by weakly coupled environments

    Get PDF
    A quantum system weakly interacting with a fast environment usually undergoes a relaxation with complex frequencies whose imaginary parts are damping rates quadratic in the coupling to the environment, in accord with Fermi's ``Golden Rule''. We show for various models (spin damped by harmonic-oscillator or random-matrix baths, quantum diffusion, quantum Brownian motion) that upon increasing the coupling up to a critical value still small enough to allow for weak-coupling Markovian master equations, a new relaxation regime can occur. In that regime, complex frequencies lose their real parts such that the process becomes overdamped. Our results call into question the standard belief that overdamping is exclusively a strong coupling feature.Comment: 4 figures; Paper submitted to Phys. Rev.

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio

    Chaotic Quantum Decay in Driven Biased Optical Lattices

    Full text link
    Quantum decay in an ac driven biased periodic potential modeling cold atoms in optical lattices is studied for a symmetry broken driving. For the case of fully chaotic classical dynamics the classical exponential decay is quantum mechanically suppressed for a driving frequency \omega in resonance with the Bloch frequency \omega_B, q\omega=r\omega_B with integers q and r. Asymptotically an algebraic decay ~t^{-\gamma} is observed. For r=1 the exponent \gamma agrees with qq as predicted by non-Hermitian random matrix theory for q decay channels. The time dependence of the survival probability can be well described by random matrix theory. The frequency dependence of the survival probability shows pronounced resonance peaks with sub-Fourier character.Comment: 7 pages, 5 figure

    Standing Up for Industry Standing in Environmental Regulatory Challenges

    Get PDF
    Article III of the U.S. Constitution limits courts to hearing only cases and controversies. To address this limitation, federal courts have developed the doctrine of standing, which requires a litigant to have suffered a cognizable injury in fact, which was caused by the challenged conduct and that will be redressable by a favorable outcome. Courts have struggled to balance these components and, in practice, different requirements have developed for meeting standing depending on the nature of the case and the type of party bringing suit. This Article explores the U.S. Court of Appeals for the District of Columbia Circuit’s recent decisions in Coalition for Responsible Regulation, Inc. v. EPA, Grocery Manufacturers Ass’n v. EPA, and Alliance of Automobile Manufacturers v. EPA. It argues that the D.C. Circuit’s findings in these cases—that industry petitioners lacked standing to sue—are the result of the court’s overly narrow analysis of EPA rulemakings as individual acts, without regard to the broader effect of the regulatory scheme of which the rulemakings are a part. In so doing, the D.C. Circuit has precluded industry petitioners from accounting for the practical financial harms they have suffered. The authors conclude that the consequence of this narrow review is a higher bar to establish standing for industry petitioners than for environmental plaintiffs. Ultimately, the D.C. Circuit’s decisions raise the specter that a regulatory program that has tangible impacts on a regulated industry will nonetheless be shielded from judicial review

    Semiclassical spectral correlator in quasi one-dimensional systems

    Full text link
    We investigate the spectral statistics of chaotic quasi one dimensional systems such as long wires. To do so we represent the spectral correlation function R(ϵ)R(\epsilon) through derivatives of a generating function and semiclassically approximate the latter in terms of periodic orbits. In contrast to previous work we obtain both non-oscillatory and oscillatory contributions to the correlation function. Both types of contributions are evaluated to leading order in 1/ϵ1/\epsilon for systems with and without time-reversal invariance. Our results agree with expressions from the theory of disordered systems.Comment: 10 pages, no figure

    Quantum resonance and anti-resonance for a periodically kicked Bose-Einstein Condensate in a one dimensional Box

    Full text link
    We investigate the quantum dynamics of a periodically kicked Bose-Einstein Condensate confined in a one dimensional (1D) Box both numerically and theoretically, emphasizing on the phenomena of quantum resonance and anti-resonance. The quantum resonant behavior of BEC is different from the single particle case but the anti-resonance condition (T=2πT = 2\pi and α=0\alpha = 0) is not affected by the atomic interaction. For the anti-resonance case, the nonlinearity (atom interaction) causes the transition between oscillation and quantum beating. For the quantum resonance case, because of the coherence of BEC, the energy increase is oscillating and the rate is dramatically affected by the many-body interaction. We also discuss the relation between the quantum resonant behavior and the KAM or non-KAM property of the corresponding classical system.Comment: 7 pages, 7 figure
    corecore