2,310 research outputs found
Comment on: Modular Theory and Geometry
In this note we comment on part of a recent article by B. Schroer and H.-W.
Wiesbrock. Therein they calculate some new modular structure for the
U(1)-current-algebra (Weyl-algebra). We point out that their findings are true
in a more general setting. The split-property allows an extension to
doubly-localized algebras.Comment: 13 pages, corrected versio
The Quest for Understanding in Relativistic Quantum Physics
We discuss the status and some perspectives of relativistic quantum physics.Comment: Invited contribution to the Special Issue 2000 of the Journal of
Mathematical Physics, 38 pages, typos corrected and references added, as to
appear in JM
There are No Causality Problems for Fermi's Two Atom System
A repeatedly discussed gedanken experiment, proposed by Fermi to check
Einstein causality, is reconsidered. It is shown that, contrary to a recent
statement made by Hegerfeldt, there appears no causality paradoxon in a proper
theoretical description of the experiment.Comment: 6 pages, latex, DESY 94-02
A sharpened nuclearity condition for massless fields
A recently proposed phase space condition which comprises information about
the vacuum structure and timelike asymptotic behavior of physical states is
verified in massless free field theory. There follow interesting conclusions
about the momentum transfer of local operators in this model.Comment: 13 pages, LaTeX. As appeared in Letters in Mathematical Physic
Pion-Nucleon Scattering in Kadyshevsky Formalism: I Meson Exchange Sector
In a series of two papers we present the theoretical results of /meson-baryon scattering in the Kadyshevsky formalism. In this paper the
results are given for meson exchange diagrams. On the formal side we show, by
means of an example, how general couplings, i.e. couplings containing multiple
derivatives and/or higher spin fields, should be treated. We do this by
introducing and applying the Takahashi-Umezawa and the Gross-Jackiw method. For
practical purposes we introduce the method. We also show how the
Takashashi-Umezawa method can be derived using the theory of Bogoliubov and
collaborators and the Gross-Jackiw method is also used to study the
-dependence of the Kadyshevsky integral equation. Last but not least we
present the second quantization procedure of the quasi particle in Kadyshevsky
formalism.Comment: 29 page
Vacuum Structures in Hamiltonian Light-Front Dynamics
Hamiltonian light-front dynamics of quantum fields may provide a useful
approach to systematic non-perturbative approximations to quantum field
theories. We investigate inequivalent Hilbert-space representations of the
light-front field algebra in which the stability group of the light-front is
implemented by unitary transformations. The Hilbert space representation of
states is generated by the operator algebra from the vacuum state. There is a
large class of vacuum states besides the Fock vacuum which meet all the
invariance requirements. The light-front Hamiltonian must annihilate the vacuum
and have a positive spectrum. We exhibit relations of the Hamiltonian to the
nontrivial vacuum structure.Comment: 16 pages, report \# ANL-PHY-7524-TH-93, (Latex
Relational interpretation of the wave function and a possible way around Bell's theorem
The famous ``spooky action at a distance'' in the EPR-szenario is shown to be
a local interaction, once entanglement is interpreted as a kind of ``nearest
neighbor'' relation among quantum systems. Furthermore, the wave function
itself is interpreted as encoding the ``nearest neighbor'' relations between a
quantum system and spatial points. This interpretation becomes natural, if we
view space and distance in terms of relations among spatial points. Therefore,
``position'' becomes a purely relational concept. This relational picture leads
to a new perspective onto the quantum mechanical formalism, where many of the
``weird'' aspects, like the particle-wave duality, the non-locality of
entanglement, or the ``mystery'' of the double-slit experiment, disappear.
Furthermore, this picture cirumvents the restrictions set by Bell's
inequalities, i.e., a possible (realistic) hidden variable theory based on
these concepts can be local and at the same time reproduce the results of
quantum mechanics.Comment: Accepted for publication in "International Journal of Theoretical
Physics
Causality and dispersion relations and the role of the S-matrix in the ongoing research
The adaptation of the Kramers-Kronig dispersion relations to the causal
localization structure of QFT led to an important project in particle physics,
the only one with a successful closure. The same cannot be said about the
subsequent attempts to formulate particle physics as a pure S-matrix project.
The feasibility of a pure S-matrix approach are critically analyzed and their
serious shortcomings are highlighted. Whereas the conceptual/mathematical
demands of renormalized perturbation theory are modest and misunderstandings
could easily be corrected, the correct understanding about the origin of the
crossing property requires the use of the mathematical theory of modular
localization and its relation to the thermal KMS condition. These new concepts,
which combine localization, vacuum polarization and thermal properties under
the roof of modular theory, will be explained and their potential use in a new
constructive (nonperturbative) approach to QFT will be indicated. The S-matrix
still plays a predominant role but, different from Heisenberg's and
Mandelstam's proposals, the new project is not a pure S-matrix approach. The
S-matrix plays a new role as a "relative modular invariant"..Comment: 47 pages expansion of arguments and addition of references,
corrections of misprints and bad formulation
The paradigm of the area law and the structure of transversal and longitudinal lightfront degrees of freedom
It is shown that an algebraically defined holographic projection of a QFT
onto the lightfront changes the local quantum properties in a very drastic way.
The expected ubiquitous vacuum polarization characteristic of QFT is confined
to the lightray (longitudinal) direction, whereas operators whose localization
is transversely separated are completely free of vacuum correlations. This
unexpected ''transverse return to QM'' combined with the rather universal
nature of the strongly longitudinal correlated vacuum correlations (which turn
out to be described by rather kinematical chiral theories) leads to a d-2
dimensional area structure of the d-1 dimensional lightfront theory. An
additive transcription in terms of an appropriately defined entropy related to
the vacuum restricted to the horizon is proposed and its model independent
universality aspects which permit its interpretation as a quantum candidate for
Bekenstein's area law are discussed. The transverse tensor product foliation
structure of lightfront degrees of freedom is essential for the simplifying
aspects of the algebraic lightcone holography. Key-words: Quantum field theory;
Mathematical physics, Quantum gravityComment: 16 pages latex, identical to version published in JPA: Math. Gen. 35
(2002) 9165-918
The H\"older Inequality for KMS States
We prove a H\"older inequality for KMS States, which generalises a well-known
trace-inequality. Our results are based on the theory of non-commutative
-spaces.Comment: 10 page
- …