22 research outputs found

    Reliable Decision from Multiple Subtasks through Threshold Optimization: Content Moderation in the Wild

    Full text link
    Social media platforms struggle to protect users from harmful content through content moderation. These platforms have recently leveraged machine learning models to cope with the vast amount of user-generated content daily. Since moderation policies vary depending on countries and types of products, it is common to train and deploy the models per policy. However, this approach is highly inefficient, especially when the policies change, requiring dataset re-labeling and model re-training on the shifted data distribution. To alleviate this cost inefficiency, social media platforms often employ third-party content moderation services that provide prediction scores of multiple subtasks, such as predicting the existence of underage personnel, rude gestures, or weapons, instead of directly providing final moderation decisions. However, making a reliable automated moderation decision from the prediction scores of the multiple subtasks for a specific target policy has not been widely explored yet. In this study, we formulate real-world scenarios of content moderation and introduce a simple yet effective threshold optimization method that searches the optimal thresholds of the multiple subtasks to make a reliable moderation decision in a cost-effective way. Extensive experiments demonstrate that our approach shows better performance in content moderation compared to existing threshold optimization methods and heuristics.Comment: WSDM2023 (Oral Presentation

    AdNext: A Visit-Pattern-Aware Mobile Advertising System for Urban Commercial Complexes

    Get PDF
    As smartphones have become prevalent, mobile advertising is getting significant attention as being not only a killer application in future mobile commerce, but also as an important business model of emerging mobile applications to monetize them. In this paper, we present AdNext, a visit-pattern-aware mobile advertising system for urban commercial complexes. AdNext can provide highly relevant ads to users by predicting places that the users will next visit. AdNext predicts the next visit place by learning the sequential visit patterns of commercial complex users in a collective manner. As one of the key enabling techniques for AdNext, we develop a probabilistic prediction model that predicts users โ€™ next visit place from their place visit history. To automatically collect the users โ€™ place visit history by smartphones, we utilize Wi-Fi-based indoor localization. We demonstrate the feasibility of AdNext by evaluating the accuracy of the prediction model. For the evaluation, we used a dataset collected from COEX Mall, the largest commercial complex in South Korea. Also, we implemented an initial prototype of AdNext with the latest smartphones, and deployed it in COEX Mall

    Variation block-based genomics method for crop plants

    Get PDF
    BACKGROUND: In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. RESULTS: We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. CONCLUSIONS: We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding

    Variation block-based genomics method for crop plants

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.Abstract Background In contrast with wild species, cultivated crop genomes consist of reshuffled recombination blocks, which occurred by crossing and selection processes. Accordingly, recombination block-based genomics analysis can be an effective approach for the screening of target loci for agricultural traits. Results We propose the variation block method, which is a three-step process for recombination block detection and comparison. The first step is to detect variations by comparing the short-read DNA sequences of the cultivar to the reference genome of the target crop. Next, sequence blocks with variation patterns are examined and defined. The boundaries between the variation-containing sequence blocks are regarded as recombination sites. All the assumed recombination sites in the cultivar set are used to split the genomes, and the resulting sequence regions are termed variation blocks. Finally, the genomes are compared using the variation blocks. The variation block method identified recurring recombination blocks accurately and successfully represented block-level diversities in the publicly available genomes of 31 soybean and 23 rice accessions. The practicality of this approach was demonstrated by the identification of a putative locus determining soybean hilum color. Conclusions We suggest that the variation block method is an efficient genomics method for the recombination block-level comparison of crop genomes. We expect that this method will facilitate the development of crop genomics by bringing genomics technologies to the field of crop breeding

    Agatha: Predicting Daily Activities from Place Visit History for Activity-Aware Mobile Services in Smart Cities

    No full text
    We present a place-history-based activity prediction system called Agatha, in order to enable activity-aware mobile services in smart cities. The system predicts a user's potential subsequent activities that are highly likely to occur given a series of information about activities done before or activity-related contextual information such as visit place and time. To predict the activities, we develop a causality-based activity prediction model using Bayesian networks. The basic idea of the prediction is that where a person has been and what he/she has done so far influence what he/she will do next. To show the feasibility, we evaluate the prediction model using the American Time-Use Survey (ATUS) dataset, which includes more than 10,000 people's location and activity history. Our evaluation shows that Agatha can predict usersโ€™ potential activities with up to 90% accuracy for the top 3 activities, more than 80% for the top 2 activities, and about 65% for the top 1 activity while considering a relatively large number of daily activities defined in the ATUS dataset, that is, 17 activities

    VisitSense: Sensing Place Visit Patterns from Ambient Radio on Smartphones for Targeted Mobile Ads in Shopping Malls

    No full text
    In this paper, we introduce a novel smartphone framework called VisitSense that automatically detects and predicts a smartphone userโ€™s place visits from ambient radio to enable behavioral targeting for mobile ads in large shopping malls. VisitSense enables mobile app developers to adopt visit-pattern-aware mobile advertising for shopping mall visitors in their apps. It also benefits mobile users by allowing them to receive highly relevant mobile ads that are aware of their place visit patterns in shopping malls. To achieve the goal, VisitSense employs accurate visit detection and prediction methods. For accurate visit detection, we develop a change-based detection method to take into consideration the stability change of ambient radio and the mobility change of users. It performs well in large shopping malls where ambient radio is quite noisy and causes existing algorithms to easily fail. In addition, we proposed a causality-based visit prediction model to capture the causality in the sequential visit patterns for effective prediction. We have developed a VisitSense prototype system, and a visit-pattern-aware mobile advertising application that is based on it. Furthermore, we deploy the system in the COEX Mall, one of the largest shopping malls in Korea, and conduct diverse experiments to show the effectiveness of VisitSense

    A Simulation Study of Ultra-relativistic Jets???I. A New Code for Relativistic Hydrodynamics

    No full text
    In an attempt to investigate the structures of ultra-relativistic jets injected into the intracluster medium (ICM) and the associated flow dynamics, such as shocks, velocity shear, and turbulence, we have developed a new special relativistic hydrodynamic (RHD) code in the Cartesian coordinates, based on the weighted essentially non-oscillatory (WENO) scheme. It is a finite difference scheme of high spatial accuracy, which has been widely employed for solving hyperbolic systems of conservation equations. The code is equipped with different WENO versions, such as the fifth-order accurate WENO-JS, WENO-Z, and WENO-ZA, and different time-integration methods, such as the fourth-order accurate Runge-Kutta (RK4) and strong stability preserving RK (SSPRK), as well as the implementation of the equations of state (EOSs) that closely approximate the EOS of the single-component perfect gas in relativistic regimes. In addition, it incorporates a high-order accurate averaging of fluxes along the transverse directions to enhance the accuracy of multidimensional problems, and a modification of eigenvalues for the acoustic modes to effectively control the carbuncle instability. Through extensive numerical tests, we assess the accuracy and robustness of the code, and choose WENO-Z, SSPRK, and the EOS suggested in Ryu et al. as the fiducial setup for simulations of ultra-relativistic jets. The results of our study of ultra-relativistic jets using the code is reported in an accompanying paper
    corecore