1,121 research outputs found
Wall-mediated self-diffusion in slit and cylindrical pores
Analytical and numerical simulation studies are performed on the diffusion of simple fluids in both thin slits and long cylindrical pores. In the region of large Knudsen numbers, where the wall-particle collisions outnumber the intermolecular collisions, we obtain analytical results for the self-diffusion coefficients for both slit and cylindrical pore shapes. The results show anomalous behavior of the mean square displacement and the velocity autocorrelation for the case of slits, unlike the case of cylindrical pores which shows standard Fick's law. Molecular dynamics simulations confirm the analytical results. We further study the wall-mediated diffusion behavior conducted by a Smoluchowski thermal wall and compare with our analytical results obtained from the stochastic thermal wall model proposed by Mon and Percus
Universal Correction of Density Functional Theory to Include London Dispersion (up to Lr, Element 103)
Conventional density functional theory (DFT) fails to describe accurately the London dispersion essential for describing molecular interactions in soft matter (biological systems, polymers, nucleic acids) and molecular crystals. This has led to several methods in which atom-dependent potentials are added into the Kohn–Sham DFT energy. Some of these corrections were fitted to accurate quantum mechanical results, but it will be tedious to determine the appropriate parameters to describe all of the atoms of the periodic table. We propose an alternative approach in which a single parameter in the low-gradient (lg) functional form is combined with the rule-based UFF (universal force-field) nonbond parameters developed for the entire periodic table (up to Lr, Z = 103), named as a DFT-ulg method. We show that DFT-ulg method leads to a very accurate description of the properties for molecular complexes and molecular crystals, providing the means for predicting more accurate weak interactions across the periodic table
High-temperature high-pressure phases of lithium from electron force field (eFF) quantum electron dynamics simulations
We recently developed the electron force field (eFF) method for practical nonadiabatic electron dynamics simulations of materials under extreme conditions and showed that it gave an excellent description of the shock thermodynamics of hydrogen from molecules to atoms to plasma, as well as the electron dynamics of the Auger decay in diamondoids following core electron ionization. Here we apply eFF to the shock thermodynamics of lithium metal, where we find two distinct consecutive phase changes that manifest themselves as a kink in the shock Hugoniot, previously observed experimentally, but not explained. Analyzing the atomic distribution functions, we establish that the first phase transition corresponds to (i) an fcc-to-cl16 phase transition that was observed previously in diamond anvil cell experiments at low temperature and (ii) a second phase transition that corresponds to the formation of a new amorphous phase (amor) of lithium that is distinct from normal molten lithium. The amorphous phase has enhanced valence electron-nucleus interactions due to localization of electrons into interstitial locations, along with a random connectivity distribution function. This indicates that eFF can characterize and compute the relative stability of states of matter under extreme conditions (e.g., warm dense matter)
The predicted crystal structure of Li_4C_6O_6, an organic cathode material for Li-ion batteries, from first-principles multi-level computational methods
In this communication, we use first-principles based multi-level computational methods to predict the crystal structure of Li_4C_6O_6, the key intermediate material that can be oxidized to Li_2C_6O_6 or reduced to Li_6C_6O_6. This predicted structure leads to an X-ray diffraction (XRD) pattern in good agreement with experiment, validating the predicted structure. With this structure in hand one can proceed to determine details for the electrochemical properties of these organic electrodes (chemical potential for Li ion as a function of loading and the mechanism for the lithiation/delithiation process) useful in designing optimum systems
- …