141 research outputs found

    Cosmological HII Bubble Growth During Reionization

    Full text link
    We present general properties of ionized hydrogen (HII) bubbles and their growth based on a state-of-the-art large-scale (100 Mpc/h) cosmological radiative transfer simulation. The simulation resolves all halos with atomic cooling at the relevant redshifts and simultaneously performs radiative transfer and dynamical evolution of structure formation. Our major conclusions include: (1) for significant HII bubbles, the number distribution is peaked at a volume of 0.6Mpc3/h3\sim 0.6 {\rm Mpc^{3}/h^{3}} at all redshifts. But, at z10z\le 10, one large, connected network of bubbles dominates the entire HII volume. (2) HII bubbles are highly non-spherical. (3) The HII regions are highly biased with respect to the underlying matter distribution with the bias decreasing with time. (4) The non-gaussianity of the HII region is small when the universe becomes 50% ionized. The non-gaussianity reaches its maximal near the end of the reionization epoch z6z\sim 6. But at all redshifts of interest there is a significant non-gaussianity in the HII field. (5) Population III galaxies may play a significant role in the reionization process. Small bubbles are initially largely produced by Pop III stars. At z10z\ge 10 even the largest HII bubbles have a balanced ionizing photon contribution from Pop II and Pop III stars, while at z8z\le 8 Pop II stars start to dominate the overall ionizing photon production for large bubbles, although Pop III stars continue to make a non-negligible contribution. (6) The relationship between halo number density and bubble size is complicated but a strong correlation is found between halo number density and bubble size for large bubbles.Comment: 10 pages, 14 figures; accepted version; higher resolution figures and supplementary material can be found at http://www.astro.princeton.edu/~msshin/reionization/web.ht

    Cosmic Reionization and the 21-cm signal: Comparison between an analytical model and a simulation

    Get PDF
    We measure several properties of the reionization process and the corresponding low-frequency 21-cm signal associated with the neutral hydrogen distribution, using a large volume, high resolution simulation of cosmic reionization. The brightness temperature of the 21-cm signal is derived by post-processing this numerical simulation with a semi-analytical prescription. Our study extends to high redshifts (z ~ 25) where, in addition to collisional coupling, our post-processed simulations take into account the inhomogeneities in the heating of the neutral gas by X-rays and the effect of an inhomogeneous Lya radiation field. Unlike the well-studied case where spin temperature is assumed to be significantly greater than the temperature of the cosmic microwave background due to uniform heating of the gas by X-rays, spatial fluctuations in both the Lya radiation field and X-ray intensity impact predictions related to the brightness temperature at z > 10, during the early stages of reionization and gas heating. The statistics of the 21-cm signal from our simulation are then compared to existing analytical models in the literature and we find that these analytical models provide a reasonably accurate description of the 21-cm power spectrum at z < 10. Such an agreement is useful since analytical models are better suited to quickly explore the full astrophysical and cosmological parameter space relevant for future 21-cm surveys. We find, nevertheless, non-negligible differences that can be attributed to differences in the inhomogeneous X-ray heating and Lya coupling at z > 10 and, with upcoming interferometric data, these differences in return can provide a way to better understand the astrophysical processes during reionization.Comment: Major paper revision to match version accepted for publication in ApJ. Simulation now fully includes fluctuations in the X-ray heating and the Lya radiation field. 18 pages, 13 figure

    AMBER: A Semi-Numerical Abundance Matching Box for the Epoch of Reionization

    Full text link
    The Abundance Matching Box for the Epoch of Reionization (AMBER) is a semi-numerical code for modeling the cosmic dawn. The new algorithm is not based on the excursion set formalism, but takes the novel approach of calculating the reionization-redshift field zre(x)z_\mathrm{re}(\boldsymbol{x}) assuming that hydrogen gas encountering higher radiation intensity are photoionized earlier. Redshift values are assigned while matching the abundance of ionized mass according to a given mass-weighted ionization fraction xˉi(z)\bar{x}_\mathrm{i}(z). The code has the unique advantage of allowing users to directly specify the reionization history through the redshift midpoint zmidz_\mathrm{mid}, duration Δz\Delta_\mathrm{z}, and asymmetry AzA_\mathrm{z} input parameters. The reionization process is further controlled through the minimum halo mass MminM_\mathrm{min} for galaxy formation and the radiation mean free path lmfpl_\mathrm{mfp} for radiative transfer. We implement improved methods for constructing density, velocity, halo, and radiation fields, which are essential components for modeling reionization observables. We compare AMBER with two other semi-numerical methods and find that our code more accurately reproduces the results from radiation-hydrodynamic simulations. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies. AMBER will be made publicly available to facilitate and transform studies of the EoR.Comment: 29 pages, 21 figures, 1 table. Submitted to ApJ. AMBER will be made publicly available when the paper is publishe
    corecore