10 research outputs found

    Integrating Functional and Diffusion Magnetic Resonance Imaging for Analysis of Structure-Function Relationship in the Human Language Network

    Get PDF
    The capabilities of magnetic resonance imaging (MRI) to measure structural and functional connectivity in the human brain have motivated growing interest in characterizing the relationship between these measures in the distributed neural networks of the brain. In this study, we attempted an integration of structural and functional analyses of the human language circuits, including Wernicke's (WA), Broca's (BA) and supplementary motor area (SMA), using a combination of blood oxygen level dependent (BOLD) and diffusion tensor MRI.Functional connectivity was measured by low frequency inter-regional correlations of BOLD MRI signals acquired in a resting steady-state, and structural connectivity was measured by using adaptive fiber tracking with diffusion tensor MRI data. The results showed that different language pathways exhibited different structural and functional connectivity, indicating varying levels of inter-dependence in processing across regions. Along the path between BA and SMA, the fibers tracked generally formed a single bundle and the mean radius of the bundle was positively correlated with functional connectivity. However, fractional anisotropy was found not to be correlated with functional connectivity along paths connecting either BA and SMA or BA and WA. for use in diagnosing and determining disease progression and recovery

    Pathogenesis of Shiga toxin-associated hemolytic uremic syndrome

    No full text
    The aim of this review is to examine recent advances in experimental and clinical research relevant to the pathogenesis of diarrhea-associated hemolytic uremic syndrome with special reference to histopathologic findings, virulence factors of Shiga toxin-producing Escherichia coli, the host response, and the prothrombotic state. Despite significant advances during the past decade, the exact mechanism by which Shiga toxin-producing E. coli leads to hemolytic uremic syndrome remains unclear. Factors such as Shiga toxin, lipopolysaccharide, the adhesins intimin and E. coli-secreted proteins A, B, and D, the 60-MD plasmid, and enterohemolysin likely contribute to the pathogenesis. Data on the inflammatory response of the host, including leukocytes and inflammatory mediators, are updated. The pathogenesis of the prothrombotic state leading to thrombocytopenia secondary to endothelial cell damage and platelet activation is also discussed. A hypothetical sequence of events from ingestion of the bacteria to the development of full-blown hemolytic uremic syndrome is proposed

    Pathogenesis of Shiga Toxin-Associated Hemolytic Uremic Syndrome

    No full text
    corecore