1,164 research outputs found
Empirical description of beta-delayed fission partial half-lives
Background: The process of beta-delayed fission (bDF) provides a versatile
tool to study low-energy fission in nuclei far away from the beta-stability
line, especially for nuclei which do not fission spontaneously. Purpose: The
aim of this paper is to investigate systematic trends in bDF partial
half-lives. Method: A semi-phenomenological framework was developed to
systematically account for the behavior of bDF partial half-lives. Results: The
bDF partial half-life appears to exponentially depend on the difference between
the Q value for beta decay of the parent nucleus and the fission-barrier energy
of the daughter (after beta decay) product. Such dependence was found to arise
naturally from some simple theoretical considerations. Conclusions: This
systematic trend was confirmed for experimental bDF partial half-lives spanning
over 7 orders of magnitudes when using fission barriers calculated from either
the Thomas-Fermi or the liquid-drop fission model. The same dependence was also
observed, although less pronounced, when comparing to fission barriers from the
finite-range liquid-drop model or the Thomas-Fermi plus Strutinsky Integral
method.Comment: accepted for publication in Phys. Rev.
Pairing-excitation versus intruder states in 68Ni and 90Zr
A discussion on the nature of the 0+ states in 68Ni (Z=28, N=40) is presented
and a comparison is made with its valence counterpart 90Zr (Z=40, N=50).
Evidence is given for a 0+ proton intruder state at only ~2.2 MeV excitation
energy in 68Ni, while the analogous neutron intruder states in 90Zr reside at
4126 keV and 5441 keV. The application of a shell-model description of 0+
intruder states reveals that many pair-scattered neutrons across N=40 have to
be involved to explain the low excitation energy of the proton-intruder
configuration in 68Ni.Comment: 10 pages, 2 figures, 1 tabl
HIE-ISOLDE: the Scientific Opportunities
The HIE-ISOLDE project aims at substantial improvements of the energy range, the intensity and the quality of the secondary radioactive beams produced at the ISOLDE facility at CERN. This report presents the questions within nuclear physics and related areas, including nuclear astrophysics, Standard Model tests and condensed matter physics, that scientists will be able to address at HIE-ISOLDE and gives specific examples of how the upgrades will improve the experimental conditions. The physics possibilities at HIE-ISOLDE were reviewed at the NuPAC meeting (Nuclear Physics and Astrophysics at CERN) held at CERN in October 2005; this report gives a more comprehensive overview and incorporates technical and scientific developments that have taken place since then
Intensity limitations of a gas cell for stopping, storing and guiding of radioactive ions
The possibility to use a gas cell filled by noble gas (He or Ar) for thermalizing, storing and transporting radioactive ions is explored by studying experimentally ion - electron recombination of stable Ni, resonantly ionized by laser light. Combined with a literature study on ionization chambers, especially developed for high-intensity applications, conclusions are drawn on the maximum intensity of the incoming ion beam. A practical limit is encountered when the space-charge induced voltage fully counteract the applied voltage on the electrodes collecting the electrons
Abrupt changes in alpha decay systematics as a manifestation of collective nuclear modes
An abrupt change in decay systematics around the N=126 neutron shell
closure is discussed. It is explained as a sudden hindrance of the clustering
of the nucleons that eventually form the particle. This is because the
clustering induced by the pairing mode acting upon the four nucleons is
inhibited if the configuration space does not allow a proper manifestation of
the pairing collectivity.Comment: 6 pages, 3 figures, submitted to Phys. Rev. C, a few new references
adde
Alpha Decay Hindrance Factors: A Probe of Mean Field Wave Functions
A simple model to calculate alpha-decay Hindrance Factors is presented. Using
deformation values obtained from PES calculations as the only input, Hindrance
Factors for the alpha-decay of Rn- and Po-isotopes are calculated. It is found
that the intrinsic structure around the Fermi surface determined by the
deformed mean field plays an important role in determining the hindrance of
alpha-decay. The fair agreement between experimental and theoretical Hindrance
Factors suggest that the wave function obtained from the energy minima of the
PES calculations contains an important part of the correlations that play a
role for the alpha-decay. The calculated HF that emerges from these
calculations render a different interpretation than the commonly assumed
n-particle n-hole picture.Comment: 7 pages, 9 figure
- âŠ