46,665 research outputs found

    Tidal stability of giant molecular clouds in the Large Magellanic Cloud

    Full text link
    Star formation does not occur until the onset of gravitational collapse inside giant molecular clouds. However, the conditions that initiate cloud collapse and regulate the star formation process remain poorly understood. Local processes such as turbulence and magnetic fields can act to promote or prevent collapse. On larger scales, the galactic potential can also influence cloud stability and is traditionally assessed by the tidal and shear effects. In this paper, we examine the stability of giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC) against shear and the galactic tide using CO data from the Magellanic Mopra Assessment (MAGMA) and rotation curve data from the literature. We calculate the tidal acceleration experienced by individual GMCs and determine the minimum cloud mass required for tidal stability. We also calculate the shear parameter, which is a measure of a clouds susceptibility to disruption via shearing forces in the galactic disk. We examine whether there are correlations between the properties and star forming activity of GMCs and their stability against shear and tidal disruption. We find that the GMCs are in approximate tidal balance in the LMC, and that shear is unlikely to affect their further evolution. GMCs with masses close to the minimal stable mass against tidal disruption are not unusual in terms of their mass, location, or CO brightness, but we note that GMCs with large velocity dispersion tend to be more sensitive to tidal instability. We also note that GMCs with smaller radii, which represent the majority of our sample, tend to more strongly resist tidal and shear disruption. Our results demonstrate that star formation in the LMC is not inhibited by to tidal or shear instability.Comment: 18 pages, 10 Figures, Accepted in PAS

    Extreme Mass Ratio Binary: Radiation reaction and gravitational waveform

    Get PDF
    For a successful detection of gravitational waves by LISA, it is essential to construct theoretical waveforms in a reliable manner. We discuss gravitational waves from an extreme mass ratio binary system which is expected to be a promising target of the LISA project. The extreme mass ratio binary is a binary system of a supermassive black hole and a stellar mass compact object. As the supermassive black hole dominates the gravitational field of the system, we suppose that the system might be well approximated by a metric perturbation of a Kerr black hole. We discuss a recent theoretical progress in calculating the waveforms from such a system.Comment: Classical and Quantum Gravity 22 (2005) S375-S379, Proceedings for 5th International LISA Symposiu

    Exact mean first-passage time on the T-graph

    Full text link
    We consider a simple random walk on the T-fractal and we calculate the exact mean time Ď„g\tau^g to first reach the central node i0i_0. The mean is performed over the set of possible walks from a given origin and over the set of starting points uniformly distributed throughout the sites of the graph, except i0i_0. By means of analytic techniques based on decimation procedures, we find the explicit expression for Ď„g\tau^g as a function of the generation gg and of the volume VV of the underlying fractal. Our results agree with the asymptotic ones already known for diffusion on the T-fractal and, more generally, they are consistent with the standard laws describing diffusion on low-dimensional structures.Comment: 6 page

    The Cosmological Constant From The Viewpoint Of String Theory

    Get PDF
    The mystery of the cosmological constant is probably the most pressing obstacle to significantly improving the models of elementary particle physics derived from string theory. The problem arises because in the standard framework of low energy physics, there appears to be no natural explanation for vanishing or extreme smallness of the vacuum energy, while on the other hand it is very difficult to modify this framework in a sensible way. In seeking to resolve this problem, one naturally wonders if the real world can somehow be interpreted in terms of a vacuum state with unbroken supersymmetry.Comment: 12 pp., Lecture at DM2000, new reference and more conservative scenario adde

    Charged spin 1/2 particle in an arbitrary magnetic field in two spatial dimensions: a supersymmetric quantum mechanical system

    Get PDF
    It is shown that the 2 X 2 matrix Hamiltonian describing the dynamics of a charged spin 1/2 particle with g-factor 2 moving in an arbitrary, spatially dependent, magnetic field in two spatial dimensions can be written as the anticommuator of a nilpotent operator and its hermitian conjugate. Consequently, the Hamiltonians for the two different spin projections form partners of a supersymmetric quantum mechanical system. The resulting supersymmetry algebra can then be exploited to explicitly construct the exact zero energy ground state wavefunction for the system. Modulo this ground state, the remainder of the eigenstates and eigenvalues of the two partner Hamiltonians form positive energy degenerate pairs. We also construct the spatially asymptotic form of the magnetic field which produces a finite magnetic flux and associated zero energy normalizable ground state wavefunction.Comment: 10 pages, LaTe

    Current status of MCNP6 as a simulation tool useful for space and accelerator applications

    Full text link
    For the past several years, a major effort has been undertaken at Los Alamos National Laboratory (LANL) to develop the transport code MCNP6, the latest LANL Monte-Carlo transport code representing a merger and improvement of MCNP5 and MCNPX. We emphasize a description of the latest developments of MCNP6 at higher energies to improve its reliability in calculating rare-isotope production, high-energy cumulative particle production, and a gamut of reactions important for space-radiation shielding, cosmic-ray propagation, and accelerator applications. We present several examples of validation and verification of MCNP6 compared to a wide variety of intermediate- and high-energy experimental data on reactions induced by photons, mesons, nucleons, and nuclei at energies from tens of MeV to about 1 TeV/nucleon, and compare to results from other modern simulation tools.Comment: 4 pages, 3 figures, Proc. 11th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2012), St. Petersburg, FL, May 28 - June 3, 201

    A submillimetre survey of the star-formation history of radio galaxies

    Full text link
    We present the results of the first major systematic submillimetre survey of radio galaxies spanning the redshift range 1 < z < 5. The primary aim of this work is to elucidate the star-formation history of this sub-class of elliptical galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the JCMT we have obtained 850-micron photometry of 47 radio galaxies to a consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The radio galaxy targets have been selected from a series of low-frequency radio surveys of increasing depth (3CRR, 6CE, etc), in order to allow us to separate the effects of increasing redshift and increasing radio power on submillimetre luminosity. Although the dynamic range of our study is inevitably small, we find clear evidence that the typical submillimetre luminosity (and hence dust mass) of a powerful radio galaxy is a strongly increasing function of redshift; the detection rate rises from 15 per cent at z 2.5, and the average submillimetre luminosity rises as (1+z)^3 out to z~4. Moreover our extensive sample allows us to argue that this behaviour is not driven by underlying correlations with other radio galaxy properties such as radio power, radio spectral index, or radio source size/age. Although radio selection may introduce other more subtle biases, the redshift distribution of our detected objects is in fact consistent with the most recent estimates of the redshift distribution of comparably bright submillimetre sources discovered in blank field surveys. The evolution of submillimetre luminosity found here for radio galaxies may thus be representative of massive ellipticals in general.Comment: 31 pages - 10 figures in main text, 3 pages of figures in appendix. This revised version has been re-structured, but the analysis and conclusions have not changed. Accepted for publication in MNRA
    • …
    corecore