619 research outputs found
Recertification of the air and methane storage vessels at the Langley 8-foot high-temperature structures tunnel
This center operates a number of sophisticated wind tunnels in order to fulfill the needs of its researchers. Compressed air, which is kept in steel storage vessels, is used to power many of these tunnels. Some of these vessels have been in use for many years, and Langley is currently recertifying these vessels to insure their continued structural integrity. One of the first facilities to be recertified under this program was the Langley 8-foot high-temperature structures tunnel. This recertification involved (1) modification, hydrotesting, and inspection of the vessels; (2) repair of all relevant defects; (3) comparison of the original design of the vessel with the current design criteria of Section 8, Division 2, of the 1974 ASME Boiler and Pressure Vessel Code; (4) fracture-mechanics, thermal, and wind-induced vibration analyses of the vessels; and (5) development of operating envelopes and a future inspection plan for the vessels. Following these modifications, analyses, and tests, the vessels were recertified for operation at full design pressure (41.4 MPa (6000 psi)) within the operating envelope developed
Secondary structure of Ac-Ala-LysH polyalanine peptides (=5,10,15) in vacuo: Helical or not?
The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime
example that a secondary structure motif which is well-known from the solution
phase (here: helices) can be formed in vacuo. We here revisit this conclusion
for n=5,10,15, using density-functional theory (van der Waals corrected
generalized gradient approximation), and gas-phase infrared vibrational
spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide
good qualitative agreement (theory vs. experiment) already in the harmonic
approximation. For n=5, the lowest energy conformer is not a simple helix, but
competes closely with \alpha-helical motifs at 300K. Close agreement between
infrared spectra from experiment and ab initio molecular dynamics (including
anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter
Bipolaron Binding in Quantum Wires
A theory of bipolaron states in quantum wires with a parabolic potential well
is developed applying the Feynman variational principle. The basic parameters
of the bipolaron ground state (the binding energy, the number of phonons in the
bipolaron cloud, the effective mass, and the bipolaron radius) are studied as a
function of sizes of the potential well. Two cases are considered in detail: a
cylindrical quantum wire and a planar quantum wire. Analytical expressions for
the bipolaron parameters are obtained at large and small sizes of the quantum
well. It is shown that at [where means the radius (halfwidth) of a
cylindrical (planar) quantum wire, expressed in Feynman units], the influence
of confinement on the bipolaron binding energy is described by the function
for both cases, while at small sizes this influence is different
in each case. In quantum wires, the bipolaron binding energy increases
logarithmically with decreasing radius. The shapes and the sizes of a
nanostructure, which are favorable for observation of stable bipolaron states,
are determined.Comment: 17 pages, 6 figures, E-mail addresses: [email protected];
[email protected]
Emergence of Bulk CsCl Structure in (CsCl)nCs+ Cluster Ions
The emergence of CsCl bulk structure in (CsCl)nCs+ cluster ions is
investigated using a mixed quantum-mechanical/semiempirical theoretical
approach. We find that rhombic dodecahedral fragments (with bulk CsCl symmetry)
are more stable than rock-salt fragments after the completion of the fifth
rhombic dodecahedral atomic shell. From this size (n=184) on, a new set of
magic numbers should appear in the experimental mass spectra. We also propose
another experimental test for this transition, which explicitely involves the
electronic structure of the cluster. Finally, we perform more detailed
calculations in the size range n=31--33, where recent experimental
investigations have found indications of the presence of rhombic dodecahedral
(CsCl)32Cs+ isomers in the cluster beams.Comment: LaTeX file. 6 pages and 4 pictures. Accepted for publication in Phys.
Rev.
Structural Transitions and Global Minima of Sodium Chloride Clusters
In recent experiments on sodium chloride clusters structural transitions
between nanocrystals with different cuboidal shapes were detected. Here we
determine reaction pathways between the low energy isomers of one of these
clusters, (NaCl)35Cl-. The key process in these structural transitions is a
highly cooperative rearrangement in which two parts of the nanocrystal slip
past one another on a {110} plane in a direction. In this way the
nanocrystals can plastically deform, in contrast to the brittle behaviour of
bulk sodium chloride crystals at the same temperatures; the nanocrystals have
mechanical properties which are a unique feature of their finite size. We also
report and compare the global potential energy minima for (NaCl)NCl- using two
empirical potentials, and comment on the effect of polarization.Comment: extended version, 13 pages, 8 figures, revte
Formation and destruction of polycyclic aromatic hydrocarbon clusters in the interstellar medium
The competition between the formation and destruction of coronene clusters
under interstellar conditions is investigated theoretically. The unimolecular
nucleation of neutral clusters is simulated with an atomic model combining an
explicit classical force field and a quantum tight-binding approach.
Evaporation rates are calculated in the framework of the phase space theory and
are inserted in an infrared emission model and compared with the growth rate
constants. It is found that, in interstellar conditions, most collisions lead
to cluster growth. The time evolution of small clusters (containing up to 312
carbon atoms) was specifically investigated under the physical conditions of
the northern photodissociation region of NGC 7023. These clusters are found to
be thermally photoevaporated much faster than they are reformed, thus providing
an interpretation for the lowest limit of the interstellar cluster size
distribution inferred from observations. The effects of ionizing the clusters
and density heterogeneities are also considered. Based on our results, the
possibility that PAH clusters could be formed in PDRs is critically discussed.Comment: 14 pages, 14 figures. Astronomy & Astrophysics, accepted for
publicatio
Electron Capture Dissociation Mass Spectrometry of Tyrosine Nitrated Peptides
In vivo protein nitration is associated with many disease conditions that involve oxidative stress and inflammatory response. The modification involves addition of a nitro group at the position ortho to the phenol group of tyrosine to give 3-nitrotyrosine. To understand the mechanisms and consequences of protein nitration, it is necessary to develop methods for identification of nitrotyrosine-containing proteins and localization of the sites of modification.Here, we have investigated the electron capture dissociation (ECD) and collision-induced association (CID) behavior of 3-nitrotyrosine-containing peptides. The presence of nitration did not affect the CID behavior of the peptides. For the doubly-charged peptides, addition of nitration severely inhibited the production of ECD sequence fragments. However, ECD of the triply-charged nitrated peptides resulted in some singly-charged sequence fragments. ECD of the nitrated peptides is characterized by multiple losses of small neutral species including hydroxyl radicals, water and ammonia. The origin of the neutral losses has been investigated by use of activated ion (AI) ECD. Loss of ammonia appears to be the result of non-covalent interactions between the nitro group and protonated lysine side-chains
Application of Linear Discriminant Analysis in Dimensionality Reduction for Hand Motion Classification
The classification of upper-limb movements based on surface electromyography (EMG) signals is an important issue in the control of assistive devices and rehabilitation systems. Increasing the number of EMG channels and features in order to increase the number of control commands can yield a high dimensional feature vector. To cope with the accuracy and computation problems associated with high dimensionality, it is commonplace to apply a processing step that transforms the data to a space of significantly lower dimensions with only a limited loss of useful information. Linear discriminant analysis (LDA) has been successfully applied as an EMG feature projection method. Recently, a number of extended LDA-based algorithms have been proposed, which are more competitive in terms of both classification accuracy and computational costs/times with classical LDA. This paper presents the findings of a comparative study of classical LDA and five extended LDA methods. From a quantitative comparison based on seven multi-feature sets, three extended LDA-based algorithms, consisting of uncorrelated LDA, orthogonal LDA and orthogonal fuzzy neighborhood discriminant analysis, produce better class separability when compared with a baseline system (without feature projection), principle component analysis (PCA), and classical LDA. Based on a 7-dimension time domain and time-scale feature vectors, these methods achieved respectively 95.2% and 93.2% classification accuracy by using a linear discriminant classifier
ISOCAM view of the starburst galaxies M82, NGC253, and NGC1808
We present results of mid-infrared 5.0-16.5 micron spectrophotometric imaging
of the starburst galaxies M82, NGC253, and NGC1808 from the ISOCAM instrument
on board the Infrared Space Observatory. The mid-infrared spectra of the three
galaxies are very similar in terms of features present. The > 11 micron
continuum attributed to very small dust grains (VSGs) exhibits a large spread
in intensity relative to the short-wavelength emission. We find that the 15
micron dust continuum flux density correlates well with the fine-structure
[ArII] 6.99 micron line flux and thus provides a good quantitative indicator of
the level of star formation activity. By contrast, the 5-11 micron region
dominated by emission from polycyclic aromatic hydrocarbons (PAHs) has a nearly
invariant shape. Variations in the relative intensities of the PAH features are
nevertheless observed, at the 20%-100% level. We illustrate extinction effects
on the shape of the mid-infrared spectrum of obscured starbursts, emphasizing
the differences depending on the applicable extinction law and the consequences
for the interpretation of PAH ratios and extinction estimates. The relative
spatial distributions of the PAH, VSG, and [ArII] 6.99 micron emission between
the three galaxies exhibit remarkable differences. The < 1 kpc size of the
mid-infrared source is much smaller than the optical extent of our sample
galaxies and 70%-100% of the IRAS 12 micron flux is recovered within the ISOCAM
< 1.5 arcmin squared field of view, indicating that the nuclear starburst
dominates the total mid-infrared emission while diffuse light from quiescent
disk star formation contributes little.Comment: 25 pages, 12 figures, accepted for publication in Astronomy and
Astrophysics; Figs. 3, 4, 5, 6, 7, 9, 10, 12 appear after Sect.
- …