2,575 research outputs found

    The Role of Deubiquitinases in DNA Double-Strand Break Repair

    Get PDF
    DNA double-strand break (DSB) is a type of the most critical DNA lesions, and if not repaired promptly, it can result in cell death or a wide variety of genetic alterations including genome instability, large- or small-scale deletions, chromosome loss, loss of heterozygosity, and translocations. DSBs are repaired by double-strand break repair (DSBR), including nonhomologous end-joining (NHEJ) and homologous recombination (HR) pathway, and defects in these pathways cause genome instability and promote tumorigenesis. Accumulating evidence has demonstrated that the superfamily of deubiquitinases (DUBs) can regulate the action and stability of DNA repair enzymes involving in DSBR via modifying ubiquitination levels, a reversible posttranslational modification pathway. In this review, we will discuss ubiquitination/deubiquitination modification involving in DSBR genes, the role of DUBs in DSBR and corresponding mechanisms, and the potential effects of this modification on human diseases

    Effective photon mass in nuclear matter and finite nuclei

    Full text link
    Electromagnetic field in nuclear matter and nuclei are studied. In the nuclear matter, because the expectation value of the electric charge density operator is not zero, different in vacuum, the U(1) local gauge symmetry of electric charge is spontaneously broken, and consequently, the photon gains an effective mass through the Higgs mechanism. An alternative way to study the effective mass of photon is to calculate the self-energy of photon perturbatively. It shows that the effective mass of photon is about 5.42MeV5.42MeV in the symmetric nuclear matter at the saturation density ρ0=0.16fm3\rho_0 = 0.16fm^{-3} and about 2.0MeV2.0MeV at the surface of 238U{}^{238}U. It seems that the two-body decay of a massive photon causes the sharp lines of electron-positron pairs in the low energy heavy ion collision experiments of 238U+232Th{}^{238}U+{}^{232}Th .Comment: 10 pages, 2 figures, 1 table, REVTEX4, submitted to Int. J. Mod. Phys.
    corecore