49 research outputs found
CompletionFormer: Depth Completion with Convolutions and Vision Transformers
Given sparse depths and the corresponding RGB images, depth completion aims at spatially propagating the sparse measurements throughout the whole image to get a dense depth prediction. Despite the tremendous progress of deep-learning-based depth completion methods, the locality of the convolutional layer or graph model makes it hard for the network to model the long-range relationship between pixels. While recent fully Transformer-based architecture has reported encouraging results with the global receptive field, the performance and efficiency gaps to the well-developed CNN models still exist because of its deteriorative local feature details. This paper proposes a Joint Convolutional Attention and Transformer block (JCAT), which deeply couples the convolutional attention layer and Vision Transformer into one block, as the basic unit to construct our depth completion model in a pyramidal structure. This hybrid architecture naturally benefits both the local connectivity of convolutions and the global context of the Transformer in one single model. As a result, our Completion-Former outperforms state-of-the-art CNNs-based methods on the outdoor KITTI Depth Completion benchmark and indoor NYUv2 dataset, achieving significantly higher efficiency (nearly 1/3 FLOPs) compared to pure Transformer-based methods. Code is available at https://github.com/youmi-zym/CompletionFormer
The Research Value of Biphasic Registration Quantitative Computed Tomography Emphysema Index in the Evaluation of Mild to Moderate COPD
Objective: To find the optimal quantitative index of emphysema by comparing and analyzing the quantitative indexes of emphysema in patients with mild to moderate chronic obstruction pulmonary disease (COPD) via registered biphasic quantitative computed tomography (QCT). Methods: We retrospectively collected 55 healthy controls, 21 Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) 1 case, and 31 GOLD 2 cases in our hospital. We imported the CT raw DICOM data into the "Digital Lung" analysis platform and measured the LAA-950% at the end of deep inspiration and the LAA-910% at the end of deep expiration. The expiratory and inspiratory CT images were registered. Then, the percentage of emphysema area (PRMEmph%), the percentage of functional small airway disease area (PRMfSAD%), and the percentage of the normal area (PRMNormal%) were calculated according to the threshold method. Pulmonary function indicators included FVC, FEV1%, and FEV1/FVC. Differences in general data, CT quantitative indexes, and pulmonary function between groups were assessed using the independent sample t-test, Mann–Whitney U test, or chi-square test, and the correlation was analyzed using Spearman correlation. The receiver operating characteristic (ROC) curve was drawn to analyze the diagnostic performance of CT quantitative parameters for emphysema in patients with mild to moderate COPD. Results: There were significant differences in sex, smoking index, FEV1%, FEV1/FVC, inspiratory phase LAA%-950, expiratory phase LAA%-910, PRMEmph%, PRMfSAD%, and PRMNormal% between the mild to moderate COPD patients and normal control groups. The inspiratory phase LAA%-950 was negatively correlated with FEV1/FVC, the expiratory phase LAA%-910 and PRMEmph% were negatively correlated with FVC, FEV1%, and FEV1/FVC. ROC curve analysis results showed that the areas under the curve of inspiration phase LAA%-950, expiratory phase LAA%-910, and PRMEmph% were 0.742, 0.861, and 0.876, respectively. Among them, the area under the curve of the PRMEmph% index was the largest, with a corresponding critical value of 9.84%, a sensitivity of 76.90%, and a specificity of 94.50%. Conclusion: Quantitative CT emphysema index LAA%-950 in the inspiratory phase, LAA%-910 in the expiratory phase, and PRMEmph% in biphasic can objectively evaluate emphysema in patients with mild to moderate COPD, among which PRMEmph% is the best evaluation index
The value of diffusion-weighted imaging in assessing the ADC changes of tissues adjacent to breast carcinoma
<p>Abstract</p> <p>Background</p> <p>To define a threshold value of apparent diffusion coefficient (ADC) with which malignant breast lesions can be distinguished from benign lesions, and to evaluate the ADC change of peri-tumor tissue in breast carcinoma by echo planar-diffusion weighted imaging (EPI-DWI).</p> <p>Methods</p> <p>57 breast lesions were scanned by routine MRI and EPI-DWI. The ADC values were compared between malignant and benign lesions. The sensitivity and specificity of EPI-DWI and the threshold ADC value were evaluated by Receiver Operating Characteristic curve (ROC). The ADC values of malignant lesion and layered peri-tumor tissues (from innermost layer 1 to outermost layer 4 with 5 mm every layer) in different directions were compared and the ADC values among different layers were compared.</p> <p>Results</p> <p>The ADC value of 35 malignant lesions was statistically lower than that of 22 benign lesions (P < 0.05). In ROC curve, the threshold value was 1.24 +/- 0.25*10E-3 mm<sup>2</sup>/s (b = 500) or 1.20 +/- 0.25*10E-3 mm<sup>2</sup>/s (b = 1000). The ADC value of malignant lesions was statistically lower than that of peri-tumor tissues in different directions (P < 0.05). For peri-tumor tissues, the ADC values increased gradually from layer 1 to layer 4 and there was a significant difference between the ADC values of layer 1 and layer 2 (P < 0.05); while from layer 2 outwards, there was no statistical difference among different layers.</p> <p>Conclusion</p> <p>ADC value was a sensitive and specific parameter that could help to differentiate benign and malignant breast lesions. ADC changes in tissues adjacent to breast carcinoma could be detected by EPI-DWI, which made EPI-DWI a promising method for helping to determine surgical scope of breast carcinoma.</p
Use of Praziquantel as an Adjuvant Enhances Protection and Tc-17 Responses to Killed H5N1 Virus Vaccine in Mice
BACKGROUND: H5N1 is a highly pathogenic influenza A virus, which can cause severe illness or even death in humans. Although the widely used killed vaccines are able to provide some protection against infection via neutralizing antibodies, cytotoxic T-lymphocyte responses that are thought to eradicate viral infections are lacking. METHODOLOGY/PRINCIPAL FINDINGS: Aiming to promote cytotoxic responses against H5N1 infection, we extended our previous finding that praziquantel (PZQ) can act as an adjuvant to induce IL-17-producing CD8(+) T cells (Tc17). We found that a single immunization of 57BL/6 mice with killed viral vaccine plus PZQ induced antigen-specific Tc17 cells, some of which also secreted IFN-γ. The induced Tc17 had cytolytic activities. Induction of these cells was impaired in CD8 knockout (KO) or IFN-γ KO mice, and was even lower in IL-17 KO mice. Importantly, the inoculation of killed vaccine with PZQ significantly reduced virus loads in the lung tissues and prolonged survival. Protection against H5N1 virus infection was obtained by adoptively transferring PZQ-primed wild type CD8(+) T cells and this was more effective than transfer of activated IFN-γ KO or IL-17 KO CD8(+) T cells. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that adding PZQ to killed H5N1 vaccine could promote broad Tc17-mediated cytotoxic T lymphocyte activity, resulting in improved control of highly pathogenic avian influenza virus infection
Conversion of a Pilot Boat to Operation on Methanol
There is currently a great need and interest in alternative fuels for shipping. Methanol is considered to be the most cost-effective alternative fuel for conversion of existing ships in order to reduce harmful emissions. There are now a number of project ongoing for conversion and new building of large vessels for methanol operation. Methanol can be produced from renewable raw materials, and will therefore be an attractive option for operators who want to/can/must prioritize this aspect. This includes for example operators of road ferries, boats for coast guard, pilot boats and boats public transport.
The aim for this project was convert a pilot boat to operate on methanol. This will support the development towards reduced greenhouse gas emissions and sustainability.
The report is mainly focused on the feasibility study of an identified pilot boat given by the Swedish Maritime Administration (Pilot boat 729). The report shows the methanol engine concepts, arrangement of the equipment, firefighting system and the model of the pilot boat with all the necessary conversion equipment
NMR spectroscopic and kinetic studies on secondary enamines of heterocyclic oximes hydrazones and semicarbazones
published_or_final_versionChemistryDoctoralDoctor of Philosoph
Editorial for the Special Issue on Advanced Materials, Structures and Processing Technologies Based on Pulsed Laser
Pulsed lasers are lasers with a single laser pulse width of less than 0 [...
Evolution Mechanism of Transient Strain and Residual Stress Distribution in Al 6061 Laser Welding
Considering the harm that residual stress causes to the mechanical properties of a weld joint, the evolution mechanisms of transient strain and residual stress distribution are investigated in laser welding of Al 6061, considering that these originate from non-uniform temperature distribution and are intensified further by the unbalanced procedure of melting and solidification. Thermal-elastic-plastic finite element method is developed and analyzed, while the actual weld profile is novel fitted by a B-spline curve. Transient strain is extracted by strain gauges. Longitudinal strain starts from a fluctuating compressive state and progresses to an ultimate residual tension state at the starting and ending welding positions, respectively. The maximum fitting deviation of the weld profile is 0.13 mm. Experimental and simulation results of residual strain are 842.0 μ and 826.8 μ, with a relative error of 1.805% at the starting position and −17.986% at the ending position. Near the weld center, mechanical behavior is complexly influenced by thermal expansion and contraction in the weld zone and the reaction binding force of the solid metal. Within a distance between −10 mm and 10 mm, and longitudinal stress is in a tension state, transverse stress fluctuates with a high gradient (~100 MPa)