8 research outputs found

    Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions

    Full text link
    The dynamical behavior of Bose-Einstein condensation (BEC) in a gas with attractive interactions is striking. Quantum theory predicts that BEC of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between self-attraction and a repulsion arising from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate, therefore, is punctuated by intermittent collapses, which are triggered either by macroscopic quantum tunneling or thermal fluctuation. Previous observation of growth and collapse has been hampered by the stochastic nature of these mechanisms. Here we reduce the stochasticity by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state. This enables us to obtain the first direct observation of the growth of a condensate with attractive interactions and its subsequent collapse.Comment: 10 PDF pages, 5 figures (2 color), 19 references, to appear in Nature Dec. 7 200

    Darpp-32 Like Protein in Specific Snail (helix-Aspersa) Neurons

    No full text
    Monoclonal antibodies to DARPP-32 recognise an antigen which is present in specific neurones in the snail (Helix aspersa). Consecutive sections 10-mu-m-thick processed for the localisation of DARPP-32 and tyrosine-hydroxylase immunoreactivity did not show a coexistence in any neuronal structures. DARPP-32 positive cells were, however, often morphologically closely associated with tyrosine-hydroxylase positive cells, implying a functional relationship consistent with the proposed role of DARPP-32. Immunochemical analysis of the DARPP-32 immunoreactive material in the snail nervous system shows that the substance has a molecular weight of 28 kDa and therefore different from the DARPP-32 protein found in the rat brain

    Aging of the striatum: mechanisms and interventions

    No full text
    Motor function declines with increasing adult age. Proper regulation of the balance between dopamine (DA) and acetylcholine (ACh) in the striatum has been shown to be fundamentally important for motor control. Although other factors can also contribute to this age-associated decline, a decrease in the concentration and binding potential of the DA D2 receptor subtype in the striatum, especially in the cholinergic interneurons, are involved in the mechanism. Our studies have shown that gene transfer of the DA D2 receptor subtype with adenoiviral vectors is effective in ameliorating age-associated functional decline of the striatal cholinergic interneurons. These achievements confirm that an age-associated decrease of D2R contributes functional alteration of the interaction of DA and ACh in the striatum and demonstrate that these age-associated changes indeed are modifiable
    corecore