27 research outputs found

    Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns

    Get PDF
    Self-assembled DNA nanostructures enable nanometre-precise patterning that can be used to create programmable molecular machines and arrays of functional materials. DNA origami is particularly versatile in this context because each DNA strand in the origami nanostructure occupies a unique position and can serve as a uniquely addressable pixel. However, the scale of such structures has been limited to about 0.05 square micrometres, hindering applications that demand a larger layout and integration with more conventional patterning methods. Hierarchical multistage assembly of simple sets of tiles can in principle overcome this limitation, but so far has not been sufficiently robust to enable successful implementation of larger structures using DNA origami tiles. Here we show that by using simple local assembly rules that are modified and applied recursively throughout a hierarchical, multistage assembly process, a small and constant set of unique DNA strands can be used to create DNA origami arrays of increasing size and with arbitrary patterns. We illustrate this method, which we term ‘fractal assembly’, by producing DNA origami arrays with sizes of up to 0.5 square micrometres and with up to 8,704 pixels, allowing us to render images such as the Mona Lisa and a rooster. We find that self-assembly of the tiles into arrays is unaffected by changes in surface patterns on the tiles, and that the yield of the fractal assembly process corresponds to about 0.95^(m − 1) for arrays containing m tiles. When used in conjunction with a software tool that we developed that converts an arbitrary pattern into DNA sequences and experimental protocols, our assembly method is readily accessible and will facilitate the construction of sophisticated materials and devices with sizes similar to that of a bacterium using DNA nanostructures

    Programmable disorder in random DNA tilings

    Get PDF
    Scaling up the complexity and diversity of synthetic molecular structures will require strategies that exploit the inherent stochasticity of molecular systems in a controlled fashion. Here we demonstrate a framework for programming random DNA tilings and show how to control the properties of global patterns through simple, local rules. We constructed three general forms of planar network—random loops, mazes and trees—on the surface of self-assembled DNA origami arrays on the micrometre scale with nanometre resolution. Using simple molecular building blocks and robust experimental conditions, we demonstrate control of a wide range of properties of the random networks, including the branching rules, the growth directions, the proximity between adjacent networks and the size distribution. Much as combinatorial approaches for generating random one-dimensional chains of polymers have been used to revolutionize chemical synthesis and the selection of functional nucleic acids, our strategy extends these principles to random two-dimensional networks of molecules and creates new opportunities for fabricating more complex molecular devices that are organized by DNA nanostructures

    DNA-Directed Self-Assembly of Highly Ordered and Dense Single-Walled Carbon Nanotube Arrays

    No full text
    Single-walled carbon nanotubes (SWNT or CNT) have unique and well-known high-performance material properties that can enable revolutionary increases in the performance of electronic devices and architectures. However, fabrication of large-scale SWNT-based ICs is an enormously challenging, unsolved problem, and self-assembly is likely needed for critical steps. Over the past several years, methods have been introduced to created ordered carbon nanotube structures using DNA guided self-assembly. In this chapter, we briefly review the challenges involved in using DNA to assemble SWNT nanostructures, and then give detailed methods to assemble dense, aligned SWNT arrays. In particular, we discuss the preparation of DNA wrapped single-walled nanotubes (DNA-CNTs) using commercial carbon nanotube products that are suitable for electronics applications. Then, we discuss methods to characterize DNA-CNTs using fluid mode atomic force microscopy (AFM). Finally, we give detailed procedures for assembly of DNA-CNTs into dense parallel arrays via linker induced surface assembly (LISA)

    Engineering and mapping nanocavity emission via precision placement of DNA origami

    No full text
    Many hybrid devices integrate functional molecular or nanoparticle components with microstructures, as exemplified by the nanophotonic devices that couple emitters to optical resonators for potential use in single-molecule detection, precision magnetometry, low threshold lasing and quantum information processing. These systems also illustrate a common difficulty for hybrid devices: although many proof-of-principle devices exist, practical applications face the challenge of how to incorporate large numbers of chemically diverse functional components into microfabricated resonators at precise locations. Here we show that the directed self-assembly of DNA origami onto lithographically patterned binding sites allows reliable and controllable coupling of molecular emitters to photonic crystal cavities (PCCs). The precision of this method is sufficient to enable us to visualize the local density of states within PCCs by simple wide-field microscopy and to resolve the antinodes of the cavity mode at a resolution of about one-tenth of a wavelength. By simply changing the number of binding sites, we program the delivery of up to seven DNA origami onto distinct antinodes within a single cavity and thereby digitally vary the intensity of the cavity emission. To demonstrate the scalability of our technique, we fabricate 65,536 independently programmed PCCs on a single chip. These features, in combination with the widely used modularity of DNA origami, suggest that our method is well suited for the rapid prototyping of a broad array of hybrid nanophotonic devices

    Packaging DNA origami into viral protein cages

    No full text
    The DNA origami technique is a widely used method to create customized, complex, spatially well-defined two-dimensional (2D) and three-dimensional (3D) DNA nanostructures. These structures have huge potential to serve as smart drug-delivery vehicles and molecular devices in various nanomedical and biotechnological applications. However, so far only little is known about the behavior of these novel structures in living organisms or in cell culture/tissue models. Moreover, enhancing pharmacokinetic bioavailability and transfection properties of such structures still remains a challenge. One intriguing approach to overcome these issues is to coat DNA origami nanostructures with proteins or lipid membranes. Here, we show how cowpea chlorotic mottle virus (CCMV) capsid proteins (CPs) can be used for coating DNA origami nanostructures. We present a method for disassembling native CCMV particles and isolating the pure CP dimers, which can further bind and encapsulate a rectangular DNA origami shape. Owing to the highly programmable nature of DNA origami, packaging of DNA nanostructures into viral protein cages could find imminent uses in enhanced targeting and cellular delivery of various active nano-objects, such as enzymes and drug molecules.Peer reviewe
    corecore