5,238 research outputs found
Enhanced structural and magnetic ordering of FePt/Mn-oxide bilayers by ion-beam bombardment and annealing
This journal issue contain selected papers of APDSC'10Poster Session - A. Magnetic Recording Technologies: PA-7Structural and magnetic properties of FePt thin films were affected strongly by capped MnO x layers prepared by ion-beam bombardment and post-annealing. As-deposited FePt/MnO x bilayer exhibited a magnetically soft fcc phase, and it turned to an ordered fct FePt phase with large coercivity (∼8 kOe) after annealing at 550°C. Increasing the %O 2/Ar in capped MnO x layer during deposition resulted in smaller ordered FePt grains separated by grain boundaries of MnO x. We found that the superlattice (001) peak is broadened considerably with larger amount of MnO x incorporated into FePt, likely due to the hindered formation of hard phase. Our results indicate that FePt/MnO x films deposited with lower %O 2/Ar, the oxygen atoms may occupy the interstitial positions in the FePt lattice to induce a local strain thus enhancing the FePt ordering. Further increased %O 2/Ar in capped MnO x layer, the excess oxygen atoms act a diffusion barrier effectively to inhibit the FePt grain growth and ordering. © 2011 IEEE.published_or_final_versionThe Asia-Pacific Data Storage Conference (APDSC'10), Hualien, Taiwan, 27-29 October 2010. In IEEE Transactions On Magnetics, 2011, v. 47 n. 3, p. 501-50
Multiviewing Ultrasonic Transducer System for Flaw Reconstruction
The characterization of failure-initiating flaws in materials and components is an important task in the assurance of structural integrity. Based on ultrasonic signals scattered from the flaw in a number of directions, inverse scattering algorithms may be used to reconstruct the size, shape and orientation of the flaw. One of the more successful methods for elastic wave inverse scattering and flaw sizing has been the inverse Born algorithm in the long and intermediate wavelength regime
The Role of Implant Position on Longâ Term Success
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141259/1/cap0187.pd
Efficient simulation of the spatial transmission dynamics of influenza
Early data from the 2009 H1N1 pandemic (H1N1pdm) suggest that previous studies over-estimated the within-country rate of spatial spread of pandemic influenza. As large spatially resolved data sets are constructed, the need for efficient simulation code with which to investigate the spatial patterns of the pandemic becomes clear. Here, we present a significant improvement to the efficiency of an individual based stochastic disease simulation framework commonly used in multiple previous studies. We quantify the efficiency of the revised algorithm and present an alternative parameterization of the model in terms of the basic reproductive number. We apply the model to the population of Taiwan and demonstrate how the location of the initial seed can influence spatial incidence profiles and the overall spread of the epidemic. Differences in incidence are driven by the relative connectivity of alternate seed locations. The ability to perform efficient simulation allows us to run a batch of simulations and take account of their average in real time. The averaged data are stable and can be used to differentiate spreading patterns that are not readily seen by only conducting a few runs. © 2010 Tsai et al.published_or_final_versio
Sampling-based Algorithms for Optimal Motion Planning
During the last decade, sampling-based path planning algorithms, such as
Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have
been shown to work well in practice and possess theoretical guarantees such as
probabilistic completeness. However, little effort has been devoted to the
formal analysis of the quality of the solution returned by such algorithms,
e.g., as a function of the number of samples. The purpose of this paper is to
fill this gap, by rigorously analyzing the asymptotic behavior of the cost of
the solution returned by stochastic sampling-based algorithms as the number of
samples increases. A number of negative results are provided, characterizing
existing algorithms, e.g., showing that, under mild technical conditions, the
cost of the solution returned by broadly used sampling-based algorithms
converges almost surely to a non-optimal value. The main contribution of the
paper is the introduction of new algorithms, namely, PRM* and RRT*, which are
provably asymptotically optimal, i.e., such that the cost of the returned
solution converges almost surely to the optimum. Moreover, it is shown that the
computational complexity of the new algorithms is within a constant factor of
that of their probabilistically complete (but not asymptotically optimal)
counterparts. The analysis in this paper hinges on novel connections between
stochastic sampling-based path planning algorithms and the theory of random
geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics
Researc
HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons
Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al
Preconditioning of mesenchymal stromal cells with low-intensity ultrasound: influence on chondrogenesis and directed SOX9 signaling pathways
Background: Continuous low-intensity ultrasound (cLIUS) facilitates the chondrogenic differentiation of human mesenchymal stromal cells (MSCs) in the absence of exogenously added transforming growth factor-beta (TGFβ) by upregulating the expression of transcription factor SOX9, a master regulator of chondrogenesis. The present study evaluated the molecular events associated with the signaling pathways impacting SOX9 gene and protein expression under cLIUS.
Methods: Human bone marrow-derived MSCs were exposed to cLIUS stimulation at 14 kPa (5 MHz, 2.5 Vpp) for 5 min. The gene and protein expression of SOX9 was evaluated. The specificity of SOX9 upregulation under cLIUS was determined by treating the MSCs with small molecule inhibitors of select signaling molecules, followed by cLIUS treatment. Signaling events regulating SOX9 expression under cLIUS were analyzed by gene expression, immunofluorescence staining, and western blotting.
Results: cLIUS upregulated the gene expression of SOX9 and enhanced the nuclear localization of SOX9 protein when compared to non-cLIUS-stimulated control. cLIUS was noted to enhance the phosphorylation of the signaling molecule ERK1/2. Inhibition of MEK/ERK1/2 by PD98059 resulted in the effective abrogation of cLIUS-induced SOX9 expression, indicating that cLIUS-induced SOX9 upregulation was dependent on the phosphorylation of ERK1/2. Inhibition of integrin and TRPV4, the upstream cell-surface effectors of ERK1/2, did not inhibit the phosphorylation of ERK1/2 and therefore did not abrogate cLIUS-induced SOX9 expression, thereby suggesting the involvement of other mechanoreceptors. Consequently, the effect of cLIUS on the actin cytoskeleton, a mechanosensitive receptor regulating SOX9, was evaluated. Diffused and disrupted actin fibers observed in MSCs under cLIUS closely resembled actin disruption by treatment with cytoskeletal drug Y27632, which is known to increase the gene expression of SOX9. The upregulation of SOX9 under cLIUS was, therefore, related to cLIUS-induced actin reorganization. SOX9 upregulation induced by actin reorganization was also found to be dependent on the phosphorylation of ERK1/2.
Conclusions: Collectively, preconditioning of MSCs by cLIUS resulted in the nuclear localization of SOX9, phosphorylation of ERK1/2 and disruption of actin filaments, and the expression of SOX9 was dependent on the phosphorylation of ERK1/2 under cLIUS
Plasma membrane profiling defines an expanded class of cell surface proteins selectively targeted for degradation by HCMV US2 in cooperation with UL141.
Human cytomegalovirus (HCMV) US2, US3, US6 and US11 act in concert to prevent immune recognition of virally infected cells by CD8+ T-lymphocytes through downregulation of MHC class I molecules (MHC-I). Here we show that US2 function goes far beyond MHC-I degradation. A systematic proteomic study using Plasma Membrane Profiling revealed US2 was unique in downregulating additional cellular targets, including: five distinct integrin α-chains, CD112, the interleukin-12 receptor, PTPRJ and thrombomodulin. US2 recruited the cellular E3 ligase TRC8 to direct the proteasomal degradation of all its targets, reminiscent of its degradation of MHC-I. Whereas integrin α-chains were selectively degraded, their integrin β1 binding partner accumulated in the ER. Consequently integrin signaling, cell adhesion and migration were strongly suppressed. US2 was necessary and sufficient for degradation of the majority of its substrates, but remarkably, the HCMV NK cell evasion function UL141 requisitioned US2 to enhance downregulation of the NK cell ligand CD112. UL141 retained CD112 in the ER from where US2 promoted its TRC8-dependent retrotranslocation and degradation. These findings redefine US2 as a multifunctional degradation hub which, through recruitment of the cellular E3 ligase TRC8, modulates diverse immune pathways involved in antigen presentation, NK cell activation, migration and coagulation; and highlight US2's impact on HCMV pathogenesis.This study was financially supported by
grant 101-2917-I-564-035 from the Taiwan National
Science Council to JLH; by a Wellcome Trust
Fellowship (093966/Z/10/Z) to MPW; an MRC Project
Grant and Wellcome Trust Programme Grant
(G1000236, WT090323MA) to GWW and PT,
European Regional Development Fund and the State
Budget of Czech Republic (RECAMO, CZ.1.05/
2.1.00/03.0101) to ER; a Wellcome Trust Principal Research Fellowship (084957/Z/08/Z) to PJL; and a
Medical Research Council (MRC) grant
(MC_UU_12014/3) to GSW and AJD. This study was
additionally supported by the Cambridge Biomedical
Research Centre, UK.This is the final published version. It first appeared at http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1004811
Mitochondrial DNA Copy Number Is Associated with Breast Cancer Risk
Mitochondrial DNA (mtDNA) copy number in peripheral blood is associated with increased risk of several cancers. However, data from prospective studies on mtDNA copy number and breast cancer risk are lacking. We evaluated the association between mtDNA copy number in peripheral blood and breast cancer risk in a nested case-control study of 183 breast cancer cases with pre-diagnostic blood samples and 529 individually matched controls among participants of the Singapore Chinese Health Study. The mtDNA copy number was measured using real time PCR. Conditional logistic regression analyses showed that there was an overall positive association between mtDNA copy number and breast cancer risk (Ptrend = 0.01). The elevated risk for higher mtDNA copy numbers was primarily seen for women with <3 years between blood draw and cancer diagnosis; ORs (95% CIs) for 2nd, 3rd, 4th, and 5th quintile of mtDNA copy number were 1.52 (0.61, 3.82), 2.52 (1.03, 6.12), 3.12 (1.31, 7.43), and 3.06 (1.25, 7.47), respectively, compared with the 1st quintile (Ptrend = 0.004). There was no association between mtDNA copy number and breast cancer risk among women who donated a blood sample ≥3 years before breast cancer diagnosis (Ptrend = 0.41). This study supports a prospective association between increased mtDNA copy number and breast cancer risk that is dependent on the time interval between blood collection and breast cancer diagnosis. Future studies are warranted to confirm these findings and to elucidate the biological role of mtDNA copy number in breast cancer risk. © 2013 Thyagarajan et al
Molecular Dynamics Simulations of the Roller Nanoimprint Process: Adhesion and Other Mechanical Characteristics
Molecular dynamics simulations using tight-binding many body potential are carried out to study the roller imprint process of a gold single crystal. The effect of the roller tooth’s taper angle, imprint depth, imprint temperature, and imprint direction on the imprint force, adhesion, stress distribution, and strain are investigated. A two-stage roller imprint process was obtained from an imprint force curve. The two-stage imprint process included the imprint forming with a rapid increase of imprint force and the unloading stage combined with the adhesion stage. The results show that the imprint force and adhesion rapidly increase with decreasing taper angle and increasing imprint depth. The magnitude of the maximum imprint force and the time at which this maximum occurs are proportional to the imprint depth, but independent of the taper angle. In a comparison of the imprint mechanisms with a vertical imprint case, while high stress and strain regions are concentrated below the mold for vertical imprint, they also occur around the mold in the case of roller imprint. The regions were only concentrated on the substrate atoms underneath the mold in vertical imprint. Plastic flow increased with increasing imprint temperature
- …