1,613 research outputs found
Life Tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae): with a Mathematical Invalidation for Applying the Jackknife Technique to the Net Reproductive Rate
Life table data for the melon fly, Bactrocera cucurbitae (Coquillett), reared on cucumber (Cucumis sativus L.) were collected under laboratory and simulated field conditions. Means and standard errors of life table parameters were estimated for two replicates using the jackknife technique. At 25ºC, the intrinsic rates of increase (_r_) found for the two replicates were 0.1354 and 0.1002 day-1, and the net reproductive rates (_R_~0~) were 206.3 and 66.0 offspring, respectively. When the cucumbers kept under simulated field conditions were covered with leaves, the _r_ and _R_~0~ for the two replicates were 0.0935 and 0.0909 day-1, 17.5 and 11.4 offspring, respectively. However, when similar cucumbers were left uncovered, the _r_ and _R_~0~ for the two replicates were 0.1043 and 0.0904 day-1, and 27.7 and 10.1 offspring, respectively. Our results revealed that considerable variability between replicates in both laboratory and field conditions is possible; this variability should be taken into consideration in data collection and application of life tables. Mathematical analysis has demonstrated that applying the jackknife technique results in unrealistic pseudo-_R_~0~ and overestimation of its variance. We suggest that the jackknife technique should not be used for the estimation of variability of _R_~0~
Continuum Superpartners
In an exact conformal theory there is no particle. The excitations have
continuum spectra and are called "unparticles" by Georgi. We consider
supersymmetric extensions of the Standard Model with approximate conformal
sectors. The conformal symmetry is softly broken in the infrared which
generates a gap. However, the spectrum can still have a continuum above the gap
if there is no confinement. Using the AdS/CFT correspondence this can be
achieved with a soft wall in the warped extra dimension. When supersymmetry is
broken the superpartners of the Standard Model particles may simply be a
continuum above gap. The collider signals can be quite different from the
standard supersymmetric scenarios and the experimental searches for the
continuum superpartners can be very challenging.Comment: 15 pages, 5 figures, talk at SCGT09 Workshop, Nagoya, Japan, 8-11
Dec, 200
High resolution Compton scattering as a Probe of the Fermi surface in the Iron-based superconductor
We have carried out first principles all-electron calculations of the
(001)-projected 2D electron momentum density and the directional Compton
profiles along the [100], [001] and [110] directions in the Fe-based
superconductor LaOFeAs within the framework of the local density approximation.
We identify Fermi surface features in the 2D electron momentum density and the
directional Compton profiles, and discuss issues related to the observation of
these features via Compton scattering experiments.Comment: 4 pages, 3 figure
Mapping the unconventional orbital texture in topological crystalline insulators
The newly discovered topological crystalline insulators (TCIs) harbor a
complex band structure involving multiple Dirac cones. These materials are
potentially highly tunable by external electric field, temperature or strain
and could find future applications in field-effect transistors, photodetectors,
and nano-mechanical systems. Theoretically, it has been predicted that
different Dirac cones, offset in energy and momentum-space, might harbor vastly
different orbital character, a unique property which if experimentally
realized, would present an ideal platform for accomplishing new spintronic
devices. However, the orbital texture of the Dirac cones, which is of immense
importance in determining a variety of materials properties, still remains
elusive in TCIs. Here, we unveil the orbital texture in a prototypical TCI
PbSnSe. By using Fourier-transform (FT) scanning tunneling
spectroscopy (STS) we measure the interference patterns produced by the
scattering of surface state electrons. We discover that the intensity and
energy dependences of FTs show distinct characteristics, which can directly be
attributed to orbital effects. Our experiments reveal the complex band topology
involving two Lifshitz transitions and establish the orbital nature of the
Dirac bands in this new class of topological materials, which could provide a
different pathway towards future quantum applications
Energy hole mitigation through cooperative transmission in wireless sensor networks
The energy balancing capability of cooperative communication is utilized to solve the energy hole problem in wireless sensor networks. We first propose a cooperative transmission strategy, where intermediate nodes participate in two cooperative multi-input single-output (MISO) transmissions with the node at the previous hop and a selected node at the next hop, respectively. Then, we study the optimization problems for power allocation of the cooperative transmission strategy by examining two different approaches: network lifetime maximization (NLM) and energy consumption minimization (ECM). For NLM, the numerical optimal solution is derived and a searching algorithm for suboptimal solution is provided when the optimal solution does not exist. For ECM, a closed-form solution is obtained. Numerical and simulation results show that both the approaches have much longer network lifetime than SISO transmission strategies and other cooperative communication schemes. Moreover, NLM which features energy balancing outperforms ECM which focuses on energy efficiency, in the network lifetime sense
Metrology Camera System of Prime Focus Spectrograph for Subaru Telescope
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber
spectrograph designed for the prime focus of the 8.2m Subaru telescope. PFS
will cover a 1.3 degree diameter field with 2394 fibers to complement the
imaging capabilities of Hyper SuprimeCam. To retain high throughput, the final
positioning accuracy between the fibers and observing targets of PFS is
required to be less than 10um. The metrology camera system (MCS) serves as the
optical encoder of the fiber motors for the configuring of fibers. MCS provides
the fiber positions within a 5um error over the 45 cm focal plane. The
information from MCS will be fed into the fiber positioner control system for
the closed loop control. MCS will be located at the Cassegrain focus of Subaru
telescope in order to to cover the whole focal plane with one 50M pixel Canon
CMOS camera. It is a 380mm Schmidt type telescope which generates a uniform
spot size with a 10 micron FWHM across the field for reasonable sampling of
PSF. Carbon fiber tubes are used to provide a stable structure over the
operating conditions without focus adjustments. The CMOS sensor can be read in
0.8s to reduce the overhead for the fiber configuration. The positions of all
fibers can be obtained within 0.5s after the readout of the frame. This enables
the overall fiber configuration to be less than 2 minutes. MCS will be
installed inside a standard Subaru Cassgrain Box. All components that generate
heat are located inside a glycol cooled cabinet to reduce the possible image
motion due to heat. The optics and camera for MCS have been delivered and
tested. The mechanical parts and supporting structure are ready as of spring
2016. The integration of MCS will start in the summer of 2016.Comment: 11 pages, 15 figures. SPIE proceeding. arXiv admin note: text overlap
with arXiv:1408.287
Recommended from our members
GPER-induced signaling is essential for the survival of breast cancer stem cells.
G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs
Metabolomic Heterogeneity of Pulmonary Arterial Hypertension
published_or_final_versio
- …