66 research outputs found

    The benefit of symbols: monkeys show linear, human-like, accuracy when using symbols to represent scalar value

    Get PDF
    When humans and animals estimate numbers of items, their error rate is proportional to the number. To date, however, only humans show the capacity to represent large numbers symbolically, which endows them with increased precision, especially for large numbers, and with tools for manipulating numbers. This ability depends critically on our capacity to acquire and represent explicit symbols. Here we show that when rhesus monkeys are trained to use an explicit symbol system, they too show more precise, and linear, scaling than they do using a one-to-one corresponding numerosity representation. We also found that when taught two different types of representations for reward amount, the monkeys systematically undervalued the less precise representation. The results indicate that monkeys, like humans, can learn alternative mechanisms for representing a single value scale and that performance variability and relative value depend on the distinguishability of each representation

    Errorful and errorless learning: The impact of cue–target constraint in learning from errors

    Get PDF
    The benefits of testing on learning are well described, and attention has recently turned to what happens when errors are elicited during learning: Is testing nonetheless beneficial, or can errors hinder learning? Whilst recent findings have indicated that tests boost learning even if errors are made on every trial, other reports, emphasizing the benefits of errorless learning, have indicated that errors lead to poorer later memory performance. The possibility that this discrepancy is a function of the materials that must be learned-in particular, the relationship between the cues and targets-was addressed here. Cued recall after either a study-only errorless condition or an errorful learning condition was contrasted across cue-target associations, for which the extent to which the target was constrained by the cue was either high or low. Experiment 1 showed that whereas errorful learning led to greater recall for low-constraint stimuli, it led to a significant decrease in recall for high-constraint stimuli. This interaction is thought to reflect the extent to which retrieval is constrained by the cue-target association, as well as by the presence of preexisting semantic associations. The advantage of errorful retrieval for low-constraint stimuli was replicated in Experiment 2, and the interaction with stimulus type was replicated in Experiment 3, even when guesses were randomly designated as being either correct or incorrect. This pattern provides support for inferences derived from reports in which participants made errors on all learning trials, whilst highlighting the impact of material characteristics on the benefits and disadvantages that accrue from errorful learning in episodic memory

    Evidence-based Kernels: Fundamental Units of Behavioral Influence

    Get PDF
    This paper describes evidence-based kernels, fundamental units of behavioral influence that appear to underlie effective prevention and treatment for children, adults, and families. A kernel is a behavior–influence procedure shown through experimental analysis to affect a specific behavior and that is indivisible in the sense that removing any of its components would render it inert. Existing evidence shows that a variety of kernels can influence behavior in context, and some evidence suggests that frequent use or sufficient use of some kernels may produce longer lasting behavioral shifts. The analysis of kernels could contribute to an empirically based theory of behavioral influence, augment existing prevention or treatment efforts, facilitate the dissemination of effective prevention and treatment practices, clarify the active ingredients in existing interventions, and contribute to efficiently developing interventions that are more effective. Kernels involve one or more of the following mechanisms of behavior influence: reinforcement, altering antecedents, changing verbal relational responding, or changing physiological states directly. The paper describes 52 of these kernels, and details practical, theoretical, and research implications, including calling for a national database of kernels that influence human behavior
    corecore