12 research outputs found

    Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC

    Get PDF
    Background: Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. Methods: As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. Results: EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p = 0.001). Conclusion: Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p = 0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC

    Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units

    Full text link

    Comparison of visible imaging, thermography and spectrometry methods to evaluate the effect of Heterodera schachtii inoculation on sugar beets

    No full text
    Abstract Background Phenotyping technologies are expected to provide predictive power for a range of applications in plant and crop sciences. Here, we use the disease pressure of Beet Cyst Nematodes (BCN) on sugar beet as an illustrative example to test the specific capabilities of different methods. Strong links between the above and belowground parts of sugar beet plants have made BCN suitable targets for use of non-destructive phenotyping methods. We compared the ability of visible light imaging, thermography and spectrometry to evaluate the effect of BCN on the growth of sugar beet plants. Results Two microplot experiments were sown with the nematode susceptible cultivar Aimanta and the nematode tolerant cultivar BlueFox under semi-field conditions. Visible imaging, thermal imaging and spectrometry were carried out on BCN infested and non-infested plants at different times during the plant development. Effects of a chemical nematicide were also evaluated using the three phenotyping methods. Leaf and beet biomass were measured at harvest. For both susceptible and tolerant cultivar, canopy area extracted from visible images was the earliest nematode stress indicator. Using such canopy area parameter, delay in leaf growth as well as benefit from a chemical nematicide could be detected already 15 days after sowing. Spectrometry was suitable to identify the stress even when the canopy reached full coverage. Thermography could only detect stress on the susceptible cultivar. Spectral Vegetation Indices related to canopy cover (NDVI and MCARI2) and chlorophyll content (CHLG) were correlated with the final yield (R = 0.69 on average for the susceptible cultivar) and the final nematode population in the soil (R = 0.78 on average for the susceptible cultivar). Conclusion In this paper we compare the use of visible imaging, thermography and spectrometry over two cultivars and 2 years under outdoor conditions. The three different techniques have their specific strengths in identifying BCN symptoms according to the type of cultivars and the growth stages of the sugar beet plants. Early detection of nematicide benefit and high yield predictability using visible imaging and spectrometry suggests promising applications for agricultural research and precision agriculture

    From shallow to deep divergences:mixed messages from Amazon Basin cichlids

    No full text
    Cichlids are a conspicuous component of Amazonian ichthyofauna, filling a wide range of niches. Yet taxonomy of many groups is still poorly known in the Amazon, and most of the yet-to-be discovered species are concentrated there. We analyzed 230 individuals sampled from six major Amazonian River Basins representing 56 morpho-species, 34 nominal and 22 undescribed species in 18 cichlid genera. We used four different single-locus species-discovery (SLSD) methods, delimiting between 53 (mPTP) and 57 (GMYC) species/lineages. When detected, species/lineages are hierarchically geographically structured. Many groups such as the Geophaginae and the Cichlinae have recently diversified, and species of genera such as Cichla and Symphysodon hybridize or have a history of hybridization; thus, these species will not be detected by SLSD methods. At the same time, for example, the genera Apistogramma and Biotodoma harbor cryptic species. For all these reasons, species/lineage diversity of Amazonian cichlids is significantly underestimated. The diversity of Amazonian cichlids is particularly remarkable given that the 570 species of Neotropical cichlids, many of which are from the Amazon Basin, are found in just 1.7% of the freshwater aquatic habitat in which the ~ 2,000 species of the East African rift lake cichlids evolved.</p

    Mental Structures as Biosemiotic Constraints on the Functions of Non-human (Neuro)Cognitive Systems

    No full text
    This paper approaches the question of how to describe the higher-level internal structures and representations of cognitive systems across various kinds of nonhuman (neuro)cognitive systems. While much research in cognitive (neuro)science and comparative cognition is dedicated to the exploration of the (neuro)cognitive mechanisms and processes with a focus on brain-behavior relations across different non-human species, not much has been done to connect (neuro)cognitive mechanisms and processes and the associated behaviors to plausible higher-level structures and representations of distinct kinds of cognitive systems in non-humans. Although the study of (neuro)cognitive mechanisms and processes can certainly be revealing, (neuro)cognitive mechanisms and processes are underspecified with respect to internal structures and representations of non-human cognitive systems because multiple such mechanisms can target, or be mapped onto, the same internal structure or vice versa. This paper outlines a biosemiotic approach to this linking problem in order to bridge the gap between functions of (neuro)cognitive systems in different species and the higher-level cognitive structures and representations. It is contended that the higher-level internal structures and representations of various cognitive systems are biosemiotic constraints on the (biological) functions of (neuro)cognitive systems that serve to restrict the range of functions (neuro)cognitive systems have or are selected for. This turns out to have implications for issues on the convergent evolution of cognitive traits
    corecore