12 research outputs found

    Revised Lithostratigraphy of the Sonsela Member (Chinle Formation, Upper Triassic) in the Southern Part of Petrified Forest National Park, Arizona

    Get PDF
    BACKGROUND: Recent revisions to the Sonsela Member of the Chinle Formation in Petrified Forest National Park have presented a three-part lithostratigraphic model based on unconventional correlations of sandstone beds. As a vertebrate faunal transition is recorded within this stratigraphic interval, these correlations, and the purported existence of a depositional hiatus (the Tr-4 unconformity) at about the same level, must be carefully re-examined. METHODOLOGY/PRINCIPAL FINDINGS: Our investigations demonstrate the neglected necessity of walking out contacts and mapping when constructing lithostratigraphic models, and providing UTM coordinates and labeled photographs for all measured sections. We correct correlation errors within the Sonsela Member, demonstrate that there are multiple Flattops One sandstones, all of which are higher than the traditional Sonsela sandstone bed, that the Sonsela sandstone bed and Rainbow Forest Bed are equivalent, that the Rainbow Forest Bed is higher than the sandstones at the base of Blue Mesa and Agate Mesa, that strata formerly assigned to the Jim Camp Wash beds occur at two stratigraphic levels, and that there are multiple persistent silcrete horizons within the Sonsela Member. CONCLUSIONS/SIGNIFICANCE: We present a revised five-part model for the Sonsela Member. The units from lowest to highest are: the Camp Butte beds, Lot's Wife beds, Jasper Forest bed (the Sonsela sandstone)/Rainbow Forest Bed, Jim Camp Wash beds, and Martha's Butte beds (including the Flattops One sandstones). Although there are numerous degradational/aggradational cycles within the Chinle Formation, a single unconformable horizon within or at the base of the Sonsela Member that can be traced across the entire western United States (the "Tr-4 unconformity") probably does not exist. The shift from relatively humid and poorly-drained to arid and well-drained climatic conditions began during deposition of the Sonsela Member (low in the Jim Camp Wash beds), well after the Carnian-Norian transition

    The role of the feedforward paradigm in cognitive psychology

    No full text
    Feedforward control is a process adjusting behaviour in a continuative way. Feedforward takes place when an equilibrium state is disrupted and the system has to automatically retrieve the homeostatic stable state. It also occurs when a perturbation is previewed and must be eliminated in order to achieve a desired goal. According to the most general definition, a feedforward process operates by fixing the future representation of the desired state, the achieving of which stops the process. Then, feedforward works by means of the refinement determined by successive comparisons between the actual and target products. In its applications, a feedforward process is thought to be modulated by the subject's purpose and the environmental state. Over the years, the feedforward process has assumed different connotations in several contests of cognitive psychology. An overview of the research fields in psychology that significantly progressed with the introduction of a feedforward paradigm is provided by: (a) reviewing models in which the feedforward concept plays a fundamental role in the system control; (b) examining critical experiments related to the interaction of feedforward and feedback processes; (c) evidencing practical applications for some of the presented feedforward-based architectures. © Marta Olivetti Belardinelli and Springer-Verlag 2006

    Physiological and pathophysiological control of glucagon secretion by pancreatic α-cells

    No full text

    Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes

    No full text
    corecore