709 research outputs found

    FasL expression on human nucleus pulposus cells contributes to the immune privilege of intervertebral disc by interacting with immunocytes

    Get PDF
    The mechanisms of immune privilege in human nucleus pulposus (NP) remain unclear. Accumulating evidence indicates that Fas ligand (FasL) might play an important role in the immune privilege of the disc. We aimed for addressing the role of FasL expression in human intervertebral disc degeneration (IDD) and immune privilege in terms of the interaction between NP cells and immunocytes via the FasL-Fas machinery. We collected NP specimens from 20 patients with IDD as degenerative group and 8 normal cadaveric donors as control. FasL expression was detected by qRT-PCR, western blotting and flow cytometry (FCM). We also collected macrophages and CD8(+) T cells from the peripheral blood of patients with IDD for co-cultures with NP cells. And macrophages and CD8(+) T cells were harvested for apoptosis analysis by FCM after 2 days of co-cultures. We found that FasL expression in mRNA, protein and cellular resolutions demonstrated a significant decrease in degenerative group compared with normal control (p<0.05). FCM analysis found that human NP cells with increased FasL expression resulted in significantly increased apoptosis ratio of macrophages and CD8(+) T cells. Our study demonstrated that FasL expression tends to decrease in degenerated discs and FasL plays an important role in human disc immune privilege, which might provide a novel target for the treatment strategies for IDD.published_or_final_versio

    Nanofluids Containing γ-Fe2O3 Nanoparticles and Their Heat Transfer Enhancements

    Get PDF
    Homogeneous and stable magnetic nanofluids containing γ-Fe2O3 nanoparticles were prepared using a two-step method, and their thermal transport properties were investigated. Thermal conductivities of the nanofluids were measured to be higher than that of base fluid, and the enhanced values increase with the volume fraction of the nanoparticles. Viscosity measurements showed that the nanofluids demonstrated Newtonian behavior and the viscosity of the nanofluids depended strongly on the tested temperatures and the nanoparticles loadings. Convective heat transfer coefficients tested in a laminar flow showed that the coefficients increased with the augment of Reynolds number and the volume fraction

    Facile Fabrication of Ultrafine Hollow Silica and Magnetic Hollow Silica Nanoparticles by a Dual-Templating Approach

    Get PDF
    The development of synthetic process for hollow silica materials is an issue of considerable topical interest. While a number of chemical routes are available and are extensively used, the diameter of hollow silica often large than 50 nm. Here, we report on a facial route to synthesis ultrafine hollow silica nanoparticles (the diameter of ca. 24 nm) with high surface area by using cetyltrimethylammmonium bromide (CTAB) and sodium bis(2-ethylhexyl) sulfosuccinate (AOT) as co-templates and subsequent annealing treatment. When the hollow magnetite nanoparticles were introduced into the reaction, the ultrafine magnetic hollow silica nanoparticles with the diameter of ca. 32 nm were obtained correspondingly. Transmission electron microscopy studies confirm that the nanoparticles are composed of amorphous silica and that the majority of them are hollow

    Leaderless genes in bacteria: clue to the evolution of translation initiation mechanisms in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Shine-Dalgarno (SD) signal has long been viewed as the dominant translation initiation signal in prokaryotes. Recently, leaderless genes, which lack 5'-untranslated regions (5'-UTR) on their mRNAs, have been shown abundant in archaea. However, current large-scale <it>in silico </it>analyses on initiation mechanisms in bacteria are mainly based on the SD-led initiation way, other than the leaderless one. The study of leaderless genes in bacteria remains open, which causes uncertain understanding of translation initiation mechanisms for prokaryotes.</p> <p>Results</p> <p>Here, we study signals in translation initiation regions of all genes over 953 bacterial and 72 archaeal genomes, then make an effort to construct an evolutionary scenario in view of leaderless genes in bacteria. With an algorithm designed to identify multi-signal in upstream regions of genes for a genome, we classify all genes into SD-led, TA-led and atypical genes according to the category of the most probable signal in their upstream sequences. Particularly, occurrence of TA-like signals about 10 bp upstream to translation initiation site (TIS) in bacteria most probably means leaderless genes.</p> <p>Conclusions</p> <p>Our analysis reveals that leaderless genes are totally widespread, although not dominant, in a variety of bacteria. Especially for <it>Actinobacteria </it>and <it>Deinococcus-Thermus</it>, more than twenty percent of genes are leaderless. Analyzed in closely related bacterial genomes, our results imply that the change of translation initiation mechanisms, which happens between the genes deriving from a common ancestor, is linearly dependent on the phylogenetic relationship. Analysis on the macroevolution of leaderless genes further shows that the proportion of leaderless genes in bacteria has a decreasing trend in evolution.</p

    The Antioxidant Protein Peroxiredoxin 4 Is Epigenetically Down Regulated in Acute Promyelocytic Leukemia

    Get PDF
    The antioxidant peroxiredoxin (PRDX) protein family comprises 6 members, which are implicated in a variety of cellular responses, including growth factor signal transduction. PRDX4 resides in the endoplasmic reticulum (ER), where it locally controls oxidative stress by reducing H2O2levels. We recently provided evidence for a regulatory function of PRDX4 in signal transduction from a myeloid growth factor receptor, the granulocyte colony-stimulating factor receptor (G-CSFR). Upon activation, the ligand-induced G-CSFR undergoes endocytosis and routes via the early endosomes where it physically interacts with ER-resident PRDX4. PRDX4 negatively regulates G-CSFR mediated signaling. Here, we investigated whether PRDX4 is affected in acute myeloid leukemia (AML); genomic alterations and expression levels of PRDX4 were investigated. We show that genomic abnormalities involving PRDX4 are rare in AML. However, we find a strong reduction in PRDX4 expression levels in acute promyelocytic leukemia (APL) compared to normal promyelocytes and different molecular subtypes of AML. Subsequently, the possible role of DNA methylation and histone modifications in silencing of PRDX4 in APLs was investigated. We show that the reduced expression is not due to methylation of the CpG island in the promoter region of PRDX4 but correlates with increased trimethylation of histone 3 lysine residue 27 (H3K27me3) and lysine residue 4 (H3K4me3) at the transcriptional start site (TSS) of PRDX4, indicative of a bivalent histone code involved in transcriptional silencing. These findings suggest that the control of G-CSF responses by the antioxidant protein PRDX4 may be perturbed in APL

    HVEM Signalling Promotes Colitis

    Get PDF
    Background Tumor necrosis factor super family (TNFSF) members regulate important processes involved in cell proliferation, survival and differentiation and are therefore crucial for the balance between homeostasis and inflammatory responses. Several members of the TNFSF are closely associated with inflammatory bowel disease (IBD). Thus, they represent interesting new targets for therapeutic treatment of IBD. Methodology/Principal Findings We have used mice deficient in TNFSF member HVEM in experimental models of IBD to investigate its role in the disease process. Two models of IBD were employed: i) chemical-induced colitis primarily mediated by innate immune cells; and ii) colitis initiated by CD4+CD45RBhigh T cells following their transfer into immuno-deficient RAG1-/- hosts. In both models of disease the absence of HVEM resulted in a significant reduction in colitis and inflammatory cytokine production. Conclusions These data show that HVEM stimulatory signals promote experimental colitis driven by innate or adaptive immune cells
    corecore