12 research outputs found

    Training in laparoscopic colorectal surgery: a new educational model using specially embalmed human anatomical specimen

    Get PDF
    With an increasing percentage of colorectal resections performed laparoscopically nowadays, there is more emphasis on training "before the job" on operative skills, including the comprehension of specific laparoscopic surgical anatomy. As integration of technical skills with correct interpretation of the anatomical image must be incorporated in laparoscopic training, a human specimen training model with special emphasis on surgical anatomy was developed. The new embalming method Anubifix((TM)) combines long-term high-quality embalming of human bodies with almost normal flexibility and plasticity, and the body can be kept operational as long as conventionally embalmed human specimens. A colorectal training model was created in a specimen in which anatomical landmarks of colorectal anatomy were permanently colored to explore laparoscopic colorectal anatomy in a skills training setting. Airtight closure of the abdominal wall permits the creation of Eleven surgical residents in their first and second year of training participated. Responses to the questionnaire showed that a majority of residents considered the model to be representative of the real situation and superior to animal models or virtual reality simulators, and helped to improve the knowledge of three-dimensional anatomy and laparoscopic skills. The new training model for laparoscopic colorectal surgery proved to be a high-quality tool, concentrating on laparoscopic colorectal anatomy in a skills training setting. We believe it may be a valuable adjunct to residency training programs based on the principle of "training before the job."

    The surgical anatomy of the small saphenous vein and adjacent nerves in relation to endovenous thermal ablation

    No full text
    Background: Thermal damage to peripheral nerves is a known complication of endovenous thermal ablation (EVA) of the small saphenous vein (SSV). Therefore, the main objective of this anatomic study was to define a safe zone in the lower leg where EVA of the SSV can be performed safely. Methods: The anatomy of the SSV and adjacent nerves was studied in 20 embalmed human specimens. The absolute distances between the SSV and the sural nerve (SN) (closest/nearest branch) were measured over the complete length of the leg (> 120 data points per leg), and the presence of the interlaying deep fascia was mapped. The distance between the SSV and the tibial nerve (TN) and the common peroneal nerve was assessed. A new analysis method, computer-assisted surgical anatomy mapping, was used t Results: The distance between the SSV and the SN was highly variable. In the proximal one-third of the lower leg, the distance between the vein and the nerve was < 5 mm in 70% of the legs. In 95%, the deep fascia was present between the SSV and the SN. In the distal two-thirds of the lower leg, the distance between the vein and the nerve was < 5mm in 90% of the legs. The deep fascia was present between both structures in 15%. In 19 legs, the SN partially ran beneath the deep fascia. In the saphe Conclusions: At the saphenopopliteal region, the TN is at risk during EVA. In the distal two-thirds of the lower leg, the SN is at risk for (thermal) damage due to the small distance to the SSV and the absence of the deep fascia between both structures. The proximal one-third of the lower leg is the optimal region for EVA of the SSV to avoid nerve damage; the fascia between the SSV and the SN is a natural barrier in this region that could preclude (thermal) damage to the nerve. (J Vasc Surg 201
    corecore