40 research outputs found

    Post-Transcriptional Regulation of Cadherin-11 Expression by GSK-3 and Ξ²-Catenin in Prostate and Breast Cancer Cells

    Get PDF
    The cell-cell adhesion molecule cadherin-11 is important in embryogenesis and bone morphogenesis, invasion of cancer cells, lymphangiogenesis, homing of cancer cells to bone, and rheumatoid arthritis. However, very little is known about the regulation of cadherin-11 expression.Here we show that cell density and GSK-3beta regulate cadherin-11 levels in cancer cells. Inactivation of GSK3beta with lithium chloride or the GSK3 inhibitor BIO and GSK3beta knockdown with siRNA repressed cadherin-11 mRNA and protein levels. RNA Polymerase II chromatin immunoprecipitation experiments showed that inhibition of GSK3 does not affect cadherin-11 gene transcription. Although the cadherin-11 3'UTR contains putative microRNA target sites and is regulated by Dicer, its stability is not regulated by GSK3 inhibition or density. Our data show that GSK3beta regulates cadherin-11 expression in two ways: first a beta-catenin-independent regulation of cadherin-11 steady state mRNA levels, and second a beta-catenin-dependent effect on cadherin-11 3'UTR stability and protein translation.Cadherin-11 mRNA and protein levels are regulated by the activity of GSK3beta and a significant degree of this regulation is exerted by the GSK3 target, beta-catenin, at the level of the cadherin-11 3'UTR

    Mutations with pathogenic potential in proteins located in or at the composite junctions of the intercalated disk connecting mammalian cardiomyocytes: a reference thesaurus for arrhythmogenic cardiomyopathies and for Naxos and Carvajal diseases

    Get PDF
    In the past decade, an avalanche of findings and reports has correlated arrhythmogenic ventricular cardiomyopathies (ARVC) and Naxos and Carvajal diseases with certain mutations in protein constituents of the special junctions connecting the polar regions (intercalated disks) of mature mammalian cardiomyocytes. These molecules, apparently together with some specific cytoskeletal proteins, are components of (or interact with) composite junctions. Composite junctions contain the amalgamated fusion products of the molecules that, in other cell types and tissues, occur in distinct separate junctions, i.e. desmosomes and adherens junctions. As the pertinent literature is still in an expanding phase and is obviously becoming important for various groups of researchers in basic cell and molecular biology, developmental biology, histology, physiology, cardiology, pathology and genetics, the relevant references so far recognized have been collected and are presented here in the following order: desmocollin-2 (Dsc2, DSC2), desmoglein-2 (Dsg2, DSG2), desmoplakin (DP, DSP), plakoglobin (PG, JUP), plakophilin-2 (Pkp2, PKP2) and some non-desmosomal proteins such as transmembrane protein 43 (TMEM43), ryanodine receptor 2 (RYR2), desmin, lamins A and C, striatin, titin and transforming growth factor-Ξ²3 (TGFΞ²3), followed by a collection of animal models and of reviews, commentaries, collections and comparative studies
    corecore