4 research outputs found

    The behaviour of giant clams (Bivalvia: Cardiidae: Tridacninae)

    Get PDF
    Giant clams, the largest living bivalves, live in close association with coral reefs throughout the Indo-Pacific. These iconic invertebrates perform numerous important ecological roles as well as serve as flagship species—drawing attention to the ongoing destruction of coral reefs and their associated biodiversity. To date, no review of giant clams has focussed on their behaviour, yet this component of their autecology is critical to their life history and hence conservation. Almost 100 articles published between 1865 and 2014 include behavioural observations, and these have been collated and synthesised into five sections: spawning, locomotion, feeding, anti-predation, and stress responses. Even though the exact cues for spawning in the wild have yet to be elucidated, giant clams appear to display diel and lunar periodicities in reproduction, and for some species, peak breeding seasons have been established. Perhaps surprisingly, giant clams have considerable mobility, ranging from swimming and gliding as larvae to crawling in juveniles and adults. Chemotaxis and geotaxis have been established, but giant clams are not phototactic. At least one species exhibits clumping behaviour, which may enhance physical stabilisation, facilitate reproduction, or provide protection from predators. Giant clams undergo several shifts in their mode of acquiring nutrition; starting with a lecithotrophic and planktotrophic diet as larvae, switching to pedal feeding after metamorphosis followed by the transition to a dual mode of filter feeding and phototrophy once symbiosis with zooxanthellae (Symbiodinium spp.) is established. Because of their shell weight and/or byssal attachment, adult giant clams are unable to escape rapidly from threats using locomotion. Instead, they exhibit a suite of visually mediated anti-predation behaviours that include sudden contraction of the mantle, valve adduction, and squirting of water. Knowledge on the behaviour of giant clams will benefit conservation and restocking efforts and help fine-tune mariculture techniques. Understanding the repertoire of giant clam behaviours will also facilitate the prediction of threshold levels for sustainable exploitation as well as recovery rates of depleted clam populations

    A review of mangrove rehabilitation in the Philippines: successes, failures and future prospects

    No full text
    SEAFDEC main author. CC covered journal. Open Access Journal. Full text available.From half a million hectares at the turn of the century, Philippine mangroves have declined to only 120,000 ha while fish/shrimp culture ponds have increased to 232,000 ha. Mangrove replanting programs have thus been popular, from community initiatives (1930s-1950s) to government-sponsored projects (1970s) to large-scale international development assistance programs (1980s to present). Planting costs escalated from less than US100toover100 to over 500/ha, with half of the latter amount allocated to administration, supervision and project management. Despite heavy funds for massive rehabilitation of mangrove forests over the last two decades, the long-term survival rates of mangroves are generally low at 10-20%. Poor survival can be mainly traced to two factors: inappropriate species and sites selection. The favored but unsuitable Rhizophora are planted in sandy substrates of exposed coastlines instead of the natural colonizers Avicennia and Sonneratia. More significantly, planting sites are generally in the lower intertidal to subtidal zones where mangroves do not thrive rather than the optimal middle to upper intertidal levels, for a simple reason. Such ideal sites have long been converted to brackishwater fishponds whereas the former are open access areas with no ownership problems. The issue of pond ownership may be complex and difficult, but such should not outweigh ecological requirements: mangroves should be planted where fishponds are, not on seagrass beds and tidal flats where they never existed. This paper reviews eight mangrove initiatives in the Philippines and evaluates the biophysical and institutional factors behind success or failure. The authors recommend specific protocols (among them pushing for a 4:1 mangrove to pond ratio recommended for a healthy ecosystem) and wider policy directions to make mangrove rehabilitation in the country more effective.We thank Raul Roldan, Team Leader of the FRMP-Project Management Consultants and Regional Adviser for Region 4A, for contributing FRMP data;Veneracion Garcia, Charles Castro and the staff of the Department of Finance-CBRMP Project Management Office, for helping the junior author gather CBRMP data; and to Ann Melano (formerly of the Coastal Marine Management Office) for information on DENR mangrove reforestation efforts. Our appreciation also goes to Stanley Tan of MIMA, Malaysia for the invitation to the International Conference and Exhibition on Mangroves of Indian and Western Pacific Oceans held in Kuala Lumpur August 21–24, 2006, where an early version of this paper was presented

    Zostera: Biology, Ecology, and Management

    No full text
    corecore