14,229 research outputs found

    Paraxial ray optics cloaking

    Get PDF
    Despite much interest and progress in optical spatial cloaking, a three-dimensional (3D), transmitting, continuously multidirectional cloak in the visible regime has not yet been demonstrated. Here we experimentally demonstrate such a cloak using ray optics, albeit with some edge effects. Our device requires no new materials, uses isotropic off-the-shelf optics, scales easily to cloak arbitrarily large objects, and is as broadband as the choice of optical material, all of which have been challenges for current cloaking schemes. In addition, we provide a concise formalism that quantifies and produces perfect optical cloaks in the small-angle (`paraxial') limit

    Paraxial full-field cloaking

    Get PDF
    We complete the `paraxial' (small-angle) ray optics cloaking formalism presented previously [Choi and Howell, Opt. Express 22, 29465 (2014)], by extending it to the full-field of light. Omnidirectionality is then the only relaxed parameter of what may be considered an ideal, broadband, field cloak. We show that an isotropic plate of uniform thickness, with appropriately designed refractive index and dispersion, can match the phase over the whole visible spectrum. Our results support the fundamental limits on cloaking for broadband vs. omnidirectionality, and provide insights into when anisotropy may be required

    Dynamic programming and direct interaction for the optimum design of skeletal towers

    Get PDF
    A computer technique is proposed for automatically designing tower structures. Dynamic programming was used to find the optimum geometric configuration of the structural members, while the member sizes were proportioned by direct iteration. Tower structures are particularly suited to this method of automatic design since the rapidity of the analysis and design depends primarily upon substructuring. Substructuring of towers was comparatively simple because interaction between adjacent substructures is simulated with reasonable accuracy. Typical examples are presented to illustrate the method

    Snowpack ground truth: Radar test site, Steamboat Springs, Colorado, 8-16 April 1976

    Get PDF
    Ground-truth data taken at Steamboat Springs, Colorado is presented. Data taken during the period April 8, 1976 - April 16, 1976 included the following: (1) snow depths and densities at selected locations (using a Mount Rose snow tube); (2) snow pits for temperature, density, and liquid water determinations using the freezing calorimetry technique and vertical layer classification; (3) snow walls were also constructed of various cross sections and documented with respect to sizes and snow characteristics; (4) soil moisture at selected locations; and (5) appropriate air temperature and weather data

    What’s Cool About Hot Stars? Cataclysmic Variables in the Mid-Infrared

    Get PDF
    We review recent results from mid-infrared observations of cataclysmic variables with the Spitzer Space Telescope. In general, these observations have revealed mid-infrared excesses, above the level expected from the stellar and accretion components, in numerous systems. This excess can be modeled as originating from circumstellar and/or circumbinary dust. We present an overview of spectral energy distributions spanning the ultraviolet to the mid-infrared, as well as mid-infrared light curves, of disk-accreting and magnetic cataclysmic variables. Physically realistic models constructed to reproduce these data indicate that the mid-infrared luminosity of many cataclysmic variables is dominated by emission from warm (T < 2000 K) dust. The presence and characteristics of dust in cataclysmic variables has potentially important implications for the secular evolution scenario for interacting binary stars

    A model for the screen printing of Newtonian fluids

    Get PDF
    A preliminary investigation into aspects of the off-contact screen-printing process is presented. A mathematical model for the printing of a thin film of Newtonian fluid is proposed, in which the screen is modelled as a permeable membrane, and the entire region above and below the screen is flooded. By drawing upon widely used industrial circuit printing practices, the distinguished limit of greatest interest to this industry is identified. Numerical and asymptotic solutions of this distinguished limit are presented that reproduce many of the features observed in industrial screen-printing

    Long term time-lapse microgravity and geotechnical monitoring of relict salt-mines, Marston, Cheshire, UK.

    Get PDF
    The area around the town of Northwich in Cheshire, U. K., has a long history of catastrophic ground subsidence caused by a combination of natural dissolution and collapsing abandoned mine workings within the underlying Triassic halite bedrock geology. In the village of Marston, the Trent and Mersey Canal crosses several abandoned salt mine workings and previously subsiding areas, the canal being breached by a catastrophic subsidence event in 1953. This canal section is the focus of a long-term monitoring study by conventional geotechnical topographic and microgravity surveys. Results of 20 years of topographic time-lapse surveys indicate specific areas of local subsidence that could not be predicted by available site and mine abandonment plan and shaft data. Subsidence has subsequently necessitated four phases of temporary canal bank remediation. Ten years of microgravity time-lapse data have recorded major deepening negative anomalies in specific sections that correlate with topographic data. Gravity 2D modeling using available site data found upwardly propagating voids, and associated collapse material produced a good match with observed microgravity data. Intrusive investigations have confirmed a void at the major anomaly. The advantages of undertaking such long-term studies for near-surface geophysicists, geotechnical engineers, and researchers working in other application areas are discussed

    Phase Control and Eclipse Avoidance in Near Rectilinear Halo Orbits

    Get PDF
    The baseline trajectory proposed for the Gateway is a southern Earth-Moon L2 Near Rectilinear Halo Orbit (NRHO). Designed to avoid eclipses, the NRHO exhibits a resonance with the lunar synodic period. The current investigation details the eclipse behavior in the baseline NRHO. Then, phase control is added to the orbit maintenance algorithm to regulate perilune passage time and maintain the eclipse-free characteristics of the Gateway reference orbit. A targeting strategy is designed to periodically target back to the long-horizon virtual reference if the orbit diverges over time in the presence of additional perturbations
    • …
    corecore