36 research outputs found

    Lymphocyte Subsets Show Different Response Patterns to In Vivo Bound Natalizumab—A Flow Cytometric Study on Patients with Multiple Sclerosis

    Get PDF
    Natalizumab is an effective monoclonal antibody therapy for the treatment of relapsing- remitting multiple sclerosis (RRMS) and interferes with immune cell migration into the central nervous system by blocking the α4 subunit of very-late activation antigen-4 (VLA-4). Although well tolerated and very effective, some patients still suffer from relapses in spite of natalizumab therapy or from unwanted side effects like progressive multifocal leukoencephalopathy (PML). In search of a routine-qualified biomarker on the effectiveness of natalizumab therapy we applied flow cytometry and analyzed natalizumab binding to α4 and α4 integrin surface levels on T-cells, B-cells, natural killer (NK) cells, and NKT cells from 26 RRMS patients under up to 72 weeks of therapy. Four-weekly infusions of natalizumab resulted in a significant and sustained increase of lymphocyte-bound natalizumab (p<0.001) which was paralleled by a significant decrease in detectability of the α4 integrin subunit on all lymphocyte subsets (p<0.001). We observed pronounced natalizumab accumulations on T and B cells at single measurements in all patients who reported clinical disease activity (n = 4). The natalizumab binding capacity of in vitro saturated lymphocytes collected during therapy was strongly diminished compared to treatment-naive cells indicating a therapy-induced reduction of α4. Summing up, this pilot study shows that flow cytometry is a useful method to monitor natalizumab binding to lymphocytes from RRMS patients under therapy. Investigating natalizumab binding provides an opportunity to evaluate the molecular level of effectiveness of natalizumab therapy in individual patients. In combination with natalizumab saturation experiments, it possibly even provides a means of studying the feasability of patient-tailored infusion intervals. A routine-qualified biomarker on the basis of individual natalizumab saturation on lymphocyte subsets might be an effective tool to improve treatment safety

    Bromometric microdetermination of organic sulfides

    No full text

    Natalizumab exerts a suppressive effect on surrogates of B cell function in blood and CSF

    Get PDF
    Background: Natalizumab for multiple sclerosis (MS) increases the risk of progressive multifocal leukoencephalopathy (PML). Objective: We aimed to assess the effect of natalizumab on cellular composition and functional B cell parameters including patients with natalizumab-associated PML (n=37). Methods: Cellular composition by flow cytometry, levels of immunoglobulin (Ig)G/IgM by immunonephelometry, and oligoclonal bands by isoelectric focusing were studied in blood and cerebrospinal fluid. Results: In MS patients treated with natalizumab without PML (n=59) the proportion of CD19+ B cells was higher in blood, but lower in cerebrospinal fluid compared with MS patients not treated with natalizumab (n=17). The CD4/CD8-ratio in cerebrospinal fluid was lower, and IgG and IgM levels as well as the IgG index dropped in longitudinal samples during natalizumab therapy. Oligoclonal bands persisted, but the total amount of the intrathecally produced IgG fraction, and the polyclonal intrathecal IgG reactivity to measles, rubella, and zoster declined. At the time of diagnosis of PML patients with natalizumab-associated PML had low total IgG levels in blood and cerebrospinal fluid. Conclusions: Natalizumab impacts B and T cell distribution and exerts an inhibitory effect on surrogates of B cell function in periphery and in cerebrospinal fluid, potentially contributing to the increased risk of developing PML
    corecore