174 research outputs found

    Comparison of bulk milk antibody and youngstock serology screens for determining herd status for Bovine Viral Diarrhoea Virus

    Get PDF
    BACKGROUND: This paper examines the use of Bulk Milk antibody (BM Ab), Youngstock (YS) serology (Check Tests) and Bulk Milk PCR (BM PCR) for determining the presence or absence of animals persistently infected (PI) with Bovine Viral Diarrhoea Virus (BVDV) within a herd. Data is presented from 26 herds where average herd sizes were 343 and 98 animals for dairy and beef units respectively. Seventeen herds had sufficient data to analyse using Receiver Operating Characteristic (ROC) and probability curves enabling calculation of the sensitivity and specificity of BM Ab and YS Check tests for determining the presence of PI animals within herds in this dataset. RESULTS: Using BM Ab to screen a herd for the presence of PI animals, achieved a herd level sensitivity and specificity of 80.00 % (44.39–97.48 %) and 85.71 % (42.13–99.64 %) respectively (95 % confidence intervals quoted). Sensitivity and specificity of YS Check Tests at a cut off of 3/10 Ab positive YS were 81.82 % (48.22–97.72 %) and 66.67 % (22.28–95.67 %) respectively (95 % confidence interval). These results were achieved by comparing the screening tests to whole herd PI searches that took place 1–19 months after the initial screen with a mean interval of 8 months. Removal of this delay by taking BM samples on the day of a whole herd test and simulating a YS Check Test from the herd test data produced improvements in the reliability of the Check Tests. BM Ab sensitivity and specificity remained unchanged. However, the Check Test sensitivity and specificity improved to 90.9 % (58.72–99.77 %) and 100 % (54.07–100 %) respectively (95 % confidence interval) at a cut of off 2.5/10 Ab positive animals. Our limited BM PCR results identified 5/23 dairy farms with a positive BM PCR result; two contained milking PIs, two had non-milking PIs and another had no PIs identified. CONCLUSIONS: Delaying a PI search following an initial herd screen decreased the diagnostic accuracy and relevance of our results. With careful interpretation, longitudinal surveillance using a combination of the techniques discussed can successfully determine farm status and therefore allow changes in BVDV status to be detected early, thus enabling prompt action in the event of a BVDV incursion

    Contributions to variability of clinical measures for use as indicators of udder health status in a clinical protocol

    Get PDF
    A cross-sectional observational study with repeated observations was conducted on 16 Danish dairy farms to quantify the influence of observer, parity, time (stage in lactation) and farm on variables routinely selected for inclusion in clinical protocols, thereby to enable a more valid comparison of udder health between different herds. During 12 months, participating herds were visited 5 times by project technicians, who examined 20 cows and scored the selected clinical variables. The estimates of effect on variables were derived from a random regression model procedure. Statistical analyses revealed that, although estimates for occurrence of several the variables, e.g. degree of oedema, varied significantly between observers, the effects on many of these estimates were similar in size. Almost all estimates for occurrences of variables were significantly affected either parity and lactation stage, or by both e.g. udder tissue consistency. Some variables, e.g. mange, had high estimates for the farm component, and others e.g. teat skin quality had a high individual component. Several of the variables, e.g. wounds on warts, had a high residual component indicating that a there still was a major part of the variation in data, which was unexplained. It was concluded that most of the variables were relevant for implementation in herd health management, but that adjustments need to be made to improve reliability

    Use of information on disease diagnoses from databases for animal health economic, welfare and food safety purposes: strengths and limitations of recordings

    Get PDF
    Many animal health, welfare and food safety databases include data on clinical and test-based disease diagnoses. However, the circumstances and constraints for establishing the diagnoses vary considerably among databases. Therefore results based on different databases are difficult to compare and compilation of data in order to perform meta-analysis is almost impossible. Nevertheless, diagnostic information collected either routinely or in research projects is valuable in cross comparisons between databases, but there is a need for improved transparency and documentation of the data and the performance characteristics of tests used to establish diagnoses. The objective of this paper is to outline the circumstances and constraints for recording of disease diagnoses in different types of databases, and to discuss these in the context of disease diagnoses when using them for additional purposes, including research. Finally some limitations and recommendations for use of data and for recording of diagnostic information in the future are given. It is concluded that many research questions have such a specific objective that investigators need to collect their own data. However, there are also examples, where a minimal amount of extra information or continued validation could make sufficient improvement of secondary data to be used for other purposes. Regardless, researchers should always carefully evaluate the opportunities and constraints when they decide to use secondary data. If the data in the existing databases are not sufficiently valid, researchers may have to collect their own data, but improved recording of diagnostic data may improve the usefulness of secondary diagnostic data in the future

    Seroepidemiology of Bovine Viral Diarrhoea Virus (BVDV) in the Adamawa Region of Cameroon and Use of the SPOT Test to Identify Herds with PI Calves

    Get PDF
    Bovine viral diarrhoea, caused by the bovine viral diarrhoea virus (BVDV) in the Pestivirus genus of the Flaviviridae, is one of the most important diseases of cattle world wide causing poor reproductive performance in adult cattle and mucosal disease in calves. In addition it causes immunosuppression and increased susceptibility to other infections, the impact of which is uncertain, particularly in sub-Saharan Africa where animals are exposed to a much wider range and higher intensity of infections compared to Europe. There are no previous estimates of the seroprevalence of BVDV in cattle in Cameroon. This paper describes the serological screening for antibodies to BVDV and antigen of BVDV in a cattle population in the Adamawa Region of Cameroon in 2000. The estimates of herd-level and within herd seroprevalences adjusted for test imperfections were 92% and 30% respectively and 16.5% of herds were classed as having a persistently infected calf (PI) in the herd within the last year based on the “spot” test approach. There was evidence of clustering of herds with PI calves across the north and west of the Region which corresponds with the higher cattle density areas and of self-clearance of infection from herds. A multivariable model was developed for the risk of having a PI calf in the herd; proximity to antelope, owning a goat, mixing with 10 other herds at grazing and the catchment area of the veterinary centre the herd was registered at were all significant risk factors. Very little is known about BVDV in sub-Saharan Africa and these high seroprevalences suggest that there is a large problem which may be having both direct impacts on fertility and neonate mortality and morbidity and also indirect effects through immunosuppression and susceptibility to other infections. Understanding and accounting for BVDV should be an important component of epidemiological studies of other diseases in sub-Saharan Africa

    Evaluation of a commercial E(rns)-capture ELISA for detection of BVDV in routine diagnostic cattle serum samples

    Get PDF
    BACKGROUND: Bovine viral diarrhoea virus (BVDV) is an important pathogen in cattle. The ability of the virus to cross the placenta during early pregnancy can result in the birth of persistently infected (PI) calves. These calves shed the virus during their entire lifespan and are the key transmitters of infection. Consequently, identification (and subsequent removal) of PI animals is necessary to rapidly clear infected herds from the virus. The objective of this study was to evaluate the suitability of a commercial E(rns)-capture ELISA, in comparison to the indirect immunoperoxidase test (IPX), for routine diagnostic detection of BVDV within a control programme. In addition, the effect of passive immunity and heat-inactivation of the samples on the performance of the ELISA was studied. METHODS: In the process of virus clearance within the Swedish BVDV control programme, all calves born in infected herds are tested for virus and antibodies. From such samples, sent in for routine diagnostics to SVA, we selected 220 sera collected from 32 beef herds and 29 dairy herds. All sera were tested for BVDV antigen using the E(rns )ELISA, and the results were compared to the results from the IPX used within the routine diagnostics. RESULTS: All 130 samples categorized as virus negative by IPX were tested negative in the ELISA, and all 90 samples categorized as virus positive were tested positive, i.e. the relative sensitivity and specificity of the ELISA was 100% in relation to IPX, and the agreement between the tests was perfect. CONCLUSION: We can conclude that the E(rns )ELISA is a valid alternative that has several advantages compared to IPX. Our results clearly demonstrate that it performs well under Swedish conditions, and that its performance is comparable with the IPX test. It is highly sensitive and specific, can be used for testing of heat-inactivated samples, precolostral testing, and probably to detect PI animals at an earlier age than the IPX

    Implementation of immunohistochemistry on frozen ear notch tissue samples in diagnosis of bovine viral diarrhea virus in persistently infected cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bovine viral diarrhea is a contagious disease of domestic and wild ruminants and one of the most economically important diseases in cattle. Bovine viral diarrhea virus belongs to the genus <it>Pestivirus</it>, within the family <it>Flaviviridae</it>. The identification and elimination of the persistently infected animals from herds is the initial step in the control and eradication programs. It is therefore necessary to have reliable methods for diagnosis of bovine viral diarrhea virus. One of those methods is immunohistochemistry. Immunohistochemistry on formalin fixed, paraffin embedded tissue is a routine technique in diagnosis of persistently infected cattle from ear notch tissue samples. However, such technique is inappropriate due to complicated tissue fixation process and it requires more days for preparation. On the contrary, immunohistochemistry on frozen tissue was usually applied on organs from dead animals. In this paper, for the first time, the imunohistochemistry on frozen ear notch tissue samples was described.</p> <p>Findings</p> <p>Seventeen ear notch tissue samples were obtained during the period 2008-2009 from persistently infected cattle. Samples were fixed in liquid nitrogen and stored on -20°C until testing. Ear notch tissue samples from all persistently infected cattle showed positive results with good section quality and possibility to determinate type of infected cells.</p> <p>Conclusions</p> <p>Although the number of samples was limited, this study indicated that immunohistochemistry on formalin fixed paraffin embedded tissue can be successfully replaced with immunohistochemistry on frozen ear notch tissue samples in diagnosis of persistently infected cattle.</p

    BVDV and BHV-1 Infections in Dairy Herds in Northern and Northeastern Thailand

    Get PDF
    Bulk milk samples from 220 dairy herds were collected at 9 public milk collection centres in the northeastern and northern Thailand, and a subset of 11 herds was selected for individual testing. The samples were tested for presence of antibodies to BVDV and BHV-1 using an indirect ELISA. The results from the bulk milk testing demonstrated a moderate level of exposure to BVDV and BHV-1 (73% and 67%, respectively). However, the low proportion of herds with high BVDV antibody-levels (13%) and the low within-herd seroprevalence of BVDV and BHV-1 in the 11 herds (24% and 5%, respectively), particularly among the young stock (15% and 0%, respectively), demonstrated a low prevalence of active BVDV infection and a low rate of reactivation of latent BHV-1. The presence of a self-clearance process was also indicated by the results from the individual testing. Moreover, a surprisingly low prevalence of BVDV and BHV-1 antibody-positive herds at one of the milk centres was found. This centre was established 5–10 years before the others. Our impression is that this reflects the self-clearance process, where consecutive replacement of imported infected animals without further spread has resulted in a nearly total elimination of the infections. Based on our experiences and on these results we are convinced that this process can continue if there is awareness of herd biosecurity. This is especially important in the context of a future intensification of the dairy production

    Not all cows are epidemiologically equal:quantifying the risks of bovine viral diarrhoea virus (BVDV) transmission through cattle movements

    Get PDF
    International audienceMany economically important cattle diseases spread between herds through livestock movements. Traditionally, most transmission models have assumed that all purchased cattle carry the same risk of generating outbreaks in the destination herd. Using data on bovine viral diarrhoea virus (BVDV) in Scotland as a case example, this study provides empirical and theoretical evidence that the risk of disease transmission varies substantially based on the animal and herd demographic characteristics at the time of purchase. Multivariable logistic regression analysis revealed that purchasing pregnant heifers and open cows sold with a calf at foot were associated with an increased risk of beef herds being seropositive for BVDV. Based on the results from a dynamic within-herd simulation model, these findings may be partly explained by the age-related probability of animals being persistently infected with BVDV as well as the herd demographic structure at the time of animal introductions. There was also evidence that an epidemiologically important network statistic, "betweenness centrality" (a measure frequently associated with the potential for herds to acquire and transmit disease), was significantly higher for herds that supplied these particular types of replacement beef cattle. The trends for dairy herds were not as clear, although there was some evidence that open heifers and open lactating cows were associated with an increased risk of BVDV. Overall, these findings have important implications for developing simulation models that more accurately reflect the industry-level transmission dynamics of infectious cattle diseases
    corecore