132 research outputs found

    Lung function, asthma symptoms, and quality of life for children in public housing in Boston: a case-series analysis

    Get PDF
    BACKGROUND: Children in urban public housing are at high risk for asthma, given elevated environmental and social exposures and suboptimal medical care. For a multifactorial disease like asthma, design of intervention studies can be influenced by the relative prevalence of key risk factors. To better understand risk factors for asthma morbidity in the context of an environmental intervention study, we conducted a detailed baseline evaluation of 78 children (aged 4–17 years) from three public housing developments in Boston. METHODS: Asthmatic children and their caregivers were recruited between April 2002 and January 2003. We conducted intake interviews that captured a detailed family and medical history, including questions regarding asthma symptom severity, access to health care, medication usage, and psychological stress. Quality of life was evaluated for both the child and caregiver with an asthma-specific scale. Pulmonary function was measured with a portable spirometer, and allergy testing for common indoor and outdoor allergens was conducted with skin testing using the prick puncture method. Exploratory linear and logistic regression models evaluating predictors of respiratory symptoms, quality of life, and pulmonary function were conducted using SAS. RESULTS: We found high rates of obesity (56%) and allergies to indoor contaminants such as cockroaches (59%) and dust mites (59%). Only 36% of children with persistent asthma reported being prescribed any daily controller medication, and most did not have an asthma action plan or a peak flow meter. One-time lung function measures were poorly correlated with respiratory symptoms or quality of life, which were significantly correlated with each other. In multivariate regression models, household size, body mass index, and environmental tobacco smoke exposure were positively associated with respiratory symptom severity (p < 0.10). Symptom severity was negatively associated with asthma-related quality of life for the child and the caregiver, with caregiver (but not child) quality of life significantly influenced by caregiver stress and whether the child was in the intensive care unit at birth. CONCLUSION: Given the elevated prevalence of multiple risk factors, coordinated improvements in the social environment, the built environment, and in medical management would likely yield the greatest health benefits in this high-risk population

    Utilizing Targeted Gene Therapy with Nanoparticles Binding Alpha v Beta 3 for Imaging and Treating Choroidal Neovascularization

    Get PDF
    Purpose: The integrin Ξ±vΞ²3 is differentially expressed on neovascular endothelial cells. We investigated whether a novel intravenously injectable Ξ±vΞ²3 integrin-ligand coupled nanoparticle (NP) can target choroidal neovascular membranes (CNV) for imaging and targeted gene therapy. Methods: CNV lesions were induced in rats using laser photocoagulation. The utility of NP for in vivo imaging and gene delivery was evaluated by coupling the NP with a green fluorescing protein plasmid (NP-GFPg). Rhodamine labeling (Rd-NP) was used to localize NP in choroidal flatmounts. Rd-NP-GFPg particles were injected intravenously on weeks 1, 2, or 3. In the treatment arm, rats received NP containing a dominant negative Raf mutant gene (NP-ATPΞΌ-Raf) on days 1, 3, and 5. The change in CNV size and leakage, and TUNEL positive cells were quantified. Results: GFP plasmid expression was seen in vivo up to 3 days after injection of Rd-NP-GFPg. Choroidal flatmounts confirmed the localization of the NP and the expression of GFP plasmid in the CNV. Treating the CNV with NP-ATPΞΌ-Raf decreased the CNV size by 42% (P<0.001). OCT analysis revealed that the reduction of CNV size started on day 5 and reached statistical significance by day 7. Fluorescein angiography grading showed significantly less leakage in the treated CNV (P<0.001). There were significantly more apoptotic (TUNEL-positive) nuclei in the treated CNV. Conclusion: Systemic administration of Ξ±vΞ²3 targeted NP can be used to label the abnormal blood vessels of CNV for imaging. Targeted gene delivery with NP-ATPΞΌ-Raf leads to a reduction in size and leakage of the CNV by induction of apoptosis in the CNV

    A eukaryotic-type signalling system of Pseudomonas aeruginosa contributes to oxidative stress resistance, intracellular survival and virulence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genome of <it>Pseudomonas aeruginosa </it>contains at least three genes encoding eukaryotic-type Ser/Thr protein kinases, one of which, <it>ppkA</it>, has been implicated in <it>P. aeruginosa </it>virulence. Together with the adjacent <it>pppA </it>phosphatase gene, they belong to the type VI secretion system (H1-T6SS) locus, which is important for bacterial pathogenesis. To determine the biological function of this protein pair, we prepared a <it>pppA-ppkA </it>double mutant and characterised its phenotype and transcriptomic profiles.</p> <p>Results</p> <p>Phenotypic studies revealed that the mutant grew slower than the wild-type strain in minimal media and exhibited reduced secretion of pyoverdine. In addition, the mutant had altered sensitivity to oxidative and hyperosmotic stress conditions. Consequently, mutant cells had an impaired ability to survive in murine macrophages and an attenuated virulence in the plant model of infection. Whole-genome transcriptome analysis revealed that <it>pppA-ppkA </it>deletion affects the expression of oxidative stress-responsive genes, stationary phase Οƒ-factor RpoS-regulated genes, and quorum-sensing regulons. The transcriptome of the <it>pppA-ppkA </it>mutant was also analysed under conditions of oxidative stress and showed an impaired response to the stress, manifested by a weaker induction of stress adaptation genes as well as the genes of the SOS regulon. In addition, expression of either RpoS-regulated genes or quorum-sensing-dependent genes was also affected. Complementation analysis confirmed that the transcription levels of the differentially expressed genes were specifically restored when the <it>pppA </it>and <it>ppkA </it>genes were expressed ectopically.</p> <p>Conclusions</p> <p>Our results suggest that in addition to its crucial role in controlling the activity of <it>P. aeruginosa </it>H1-T6SS at the post-translational level, the PppA-PpkA pair also affects the transcription of stress-responsive genes. Based on these data, it is likely that the reduced virulence of the mutant strain results from an impaired ability to survive in the host due to the limited response to stress conditions.</p

    Inhibition of cancer cell invasion and metastasis by genistein

    Get PDF
    Genistein is a small, biologically active flavonoid that is found in high amounts in soy. This important compound possesses a wide variety of biological activities, but it is best known for its ability to inhibit cancer progression. In particular, genistein has emerged as an important inhibitor of cancer metastasis. Consumption of genistein in the diet has been linked to decreased rates of metastatic cancer in a number of population-based studies. Extensive investigations have been performed to determine the molecular mechanisms underlying genistein’s antimetastatic activity, with results indicating that this small molecule has significant inhibitory activity at nearly every step of the metastatic cascade. Reports have demonstrated that, at high concentrations, genistein can inhibit several proteins involved with primary tumor growth and apoptosis, including the cyclin class of cell cycle regulators and the Akt family of proteins. At lower concentrations that are similar to those achieved through dietary consumption, genistein can inhibit the prometastatic processes of cancer cell detachment, migration, and invasion through a variety of mechanisms, including the transforming growth factor (TGF)-Ξ² signaling pathway. Several in vitro findings have been corroborated in both in vivo animal studies and in early-phase human clinical trials, demonstrating that genistein can both inhibit human cancer metastasis and also modulate markers of metastatic potential in humans, respectively. Herein, we discuss the variety of mechanisms by which genistein regulates individual steps of the metastatic cascade and highlight the potential of this natural product as a promising therapeutic inhibitor of metastasis

    Overactive bladder – 18 years – Part II

    Full text link
    • …
    corecore