2,021 research outputs found

    A Mutual Attraction Model for Both Assortative and Disassortative Weighted Networks

    Full text link
    In most networks, the connection between a pair of nodes is the result of their mutual affinity and attachment. In this letter, we will propose a Mutual Attraction Model to characterize weighted evolving networks. By introducing the initial attractiveness AA and the general mechanism of mutual attraction (controlled by parameter mm), the model can naturally reproduce scale-free distributions of degree, weight and strength, as found in many real systems. Simulation results are in consistent with theoretical predictions. Interestingly, we also obtain nontrivial clustering coefficient C and tunable degree assortativity r, depending on mm and A. Our weighted model appears as the first one that unifies the characterization of both assortative and disassortative weighted networks.Comment: 4 pages, 3 figure

    Deforming black holes with even multipolar differential rotation boundary

    Full text link
    Motivated by the novel asymptotically global AdS4_4 solutions with deforming horizon in [JHEP {\bf 1802}, 060 (2018)], we analyze the boundary metric with even multipolar differential rotation and numerically construct a family of deforming solutions with quadrupolar differential rotation boundary, including two classes of solutions: solitons and black holes. In contrast to solutions with dipolar differential rotation boundary, we find that even though the norm of Killing vector ∂t\partial_t becomes spacelike for certain regions of polar angle θ\theta when ε>2\varepsilon>2, solitons and black holes with quadrupolar differential rotation still exist and do not develop hair due to superradiance. Moreover, at the same temperature, the horizonal deformation of quadrupolar rotation is smaller than that of dipolar rotation. Furthermore, we also study the entropy and quasinormal modes of the solutions, which have the analogous properties to that of dipolar rotation.Comment: 18 pages, 21 figure

    General Dynamics of Topology and Traffic on Weighted Technological Networks

    Full text link
    For most technical networks, the interplay of dynamics, traffic and topology is assumed crucial to their evolution. In this paper, we propose a traffic-driven evolution model of weighted technological networks. By introducing a general strength-coupling mechanism under which the traffic and topology mutually interact, the model gives power-law distributions of degree, weight and strength, as confirmed in many real networks. Particularly, depending on a parameter W that controls the total weight growth of the system, the nontrivial clustering coefficient C, degree assortativity coefficient r and degree-strength correlation are all in consistence with empirical evidences.Comment: 4 pages, 4 figure

    Analytical Studies on a Modified Nagel-Schreckenberg Model with the Fukui-Ishibashi Acceleration Rule

    Full text link
    We propose and study a one-dimensional traffic flow cellular automaton model of high-speed vehicles with the Fukui-Ishibashi-type (FI) acceleration rule for all cars, and the Nagel-Schreckenberg-type (NS) stochastic delay mechanism. By using the car-oriented mean field theory, we obtain analytically the fundamental diagrams of the average speed and vehicle flux depending on the vehicle density and stochastic delay probability. Our theoretical results, which may contribute to the exact analytical theory of the NS model, are in excellent agreement with numerical simulations.Comment: 3 pages previous; now 4 pages 2 eps figure

    Dynamical Scalar Degree of Freedom in Horava-Lifshitz Gravity

    Full text link
    We investigate the linear cosmological perturbations of Ho\v{r}ava-Lifshitz gravity in a FRW universe without any matter. Our results show that a new gauge invariant dynamical scalar mode emerges, due to the gauge transformation under the "foliation-preserving" diffeomorphism and "projectability condition", and it can produce a scale invariant power spectrum. In the infrared regime with λ=1\lambda=1, the dynamical scalar degree of freedom turns to be a non-dynamical one at the linear order level.Comment: 5pages, no figures, references added, version to appear in PRD(R
    • …
    corecore