32,332 research outputs found
Design, testing, and delivery of an interactive graphics display subsystem
An interactive graphics display system was designed to be used in locating components on a printed circuit card and outputting data concerning their thermal values. The manner in which this was accomplished in terms of both hardware and software is described. An analysis of the accuracy of this approach is also included
Open-loop frequency acquisition for suppressed-carrier biphase signals using one-pole arm filters
Open loop frequency acquisition performance is discussed for suppressed carrier binary phase shift keyed signals in terms of the probability of detecting the carrier frequency offset when the arms of the Costas loop detector have one pole filters. The approach, which does not require symbol timing, uses fast Fourier transforms (FFTs) to detect the carrier frequency offset. The detection probability, which depends on both the 3 dB arm filter bandwidth and the received symbol signal to noise ratio, is derived and is shown to be independent of symbol timing. It is shown that the performance of this technique is slightly better that other open loop acquisition techniques which use integrators in the arms and whose detection performance varies with symbol timing
Interaction of gases with lunar materials
The surface properties of lunar fines were investigated. Results indicate that, for the most part, these properties are independent of the chemical composition and location of the samples on the lunar surface. The leaching of channels and pores by adsorbed water vapor is a distinguishing feature of their surface chemistry. The elements of air, if adsorbed in conjunction with water vapor or liquid water, severely impedes the leaching process. In the absence of air, liquid water is more effective than water vapor in attacking the grains. The characteristics of Apollo 17 orange fines were evaluated and compared with those of other samples. The interconnecting channels produced by water vapor adsorption were found to be wider than usual for other types of fines. Damage tracks caused by heavy cosmic ray nuclei and an unusually high halogen content might provide for stronger etching conditions upon exposure to water vapor
Flight-measured laminar boundary-layer transition phenomena including stability theory analysis
Flight experiments were conducted on a single-engine turboprop aircraft fitted with a 92-in-chord, 3-ft-span natural laminar flow glove at glove section lift coefficients from 0.15 to 1.10. The boundary-layer transition measurement methods used included sublimating chemicals and surface hot-film sensors. Transition occurred downstream of the minimum pressure point. Hot-film sensors provided a well-defined indication of laminar, laminar-separation, transitional, and turbulent boundary layers. Theoretical calculations of the boundary-layer parameters provided close agreement between the predicted laminar-separation point and the measured transition location. Tollmien-Schlichting (T-S) wave growth n-factors between 15 and 17 were calculated at the predicted point of laminar separation. These results suggest that for many practical airplane cruise conditions, laminar separation (as opposed to T-S instability) is the major cause of transition in predominantly two-dimensional flows
A flight evaluation of a trailing anemometer for low-speed calibrations of airspeed systems on research aircraft
Research airspeed systems on three low-speed general aviation airplanes were calibrated by the trailing anemometer method. Each airplane was fitted with an NASA pitot-static pressure tube mounted on either a nose or wing boom. The uncalibrated airspeed systems contained residual static-pressure position errors which were too large for high-accuracy flight research applications. The trailing anemometer calibration was in agreement with the tower flyby calibration for the one aircraft for which the comparison was made. The continuous deceleration technique for the trailing anemometer method offers reduced test time with no appreciable loss of accuracy for airspeed systems with pitot-static system lag characteristics similar to those described
Improved ontology for eukaryotic single-exon coding sequences in biological databases
Indexación: Scopus.Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases. © The Author(s) 2018. Published by Oxford University Press.https://academic.oup.com/database/article/doi/10.1093/database/bay089/509943
Magnetic resonance imaging (MRI) of heavy-metal transport and fate in an artificial biofilm
Unlike planktonic systems, reaction rates in biofilms are often limited by mass transport, which controls the rate of supply of contaminants into the biofilm matrix. To help understand this phenomenon, we investigated the potential of magnetic resonance imaging (MRI) to spatially quantify copper transport and fate in biofilms. For this initial study we utilized an artificial biofilm composed of a 50:50 mix of bacteria and agar. MRI successfully mapped Cu2+ uptake into the artificial biofilm by mapping T2 relaxation rates. A calibration protocol was used to convert T2 values into actual copper concentrations. Immobilization rates in the artificial biofilm were slow compared to the rapid equilibration of planktonic systems. Even after 36 h, the copper front had migrated only 3 mm into the artificial biofilm and at this distance from the copper source, concentrations were very low. This slow equilibration is a result of (1) the time it takes copper to diffuse over such distances and (2) the adsorption of copper onto cell surfaces, which further impedes copper diffusion. The success of this trial run indicates MRI could be used to quantitatively map heavy metal transport and immobilization in natural biofilms
Glass transitions and shear thickening suspension rheology
We introduce a class of simple models for shear thickening and/ or `jamming'
in colloidal suspensions. These are based on schematic mode coupling theory
(MCT) of the glass transition, having a memory term that depends on a density
variable, and on both the shear stress and the shear rate. (Tensorial aspects
of the rheology, such as normal stresses, are ignored for simplicity.) We
calculate steady-state flow curves and correlation functions. Depending on
model parameters, we find a range of rheological behaviours, including
`S-shaped' flow curves, indicating discontinuous shear thickening, and
stress-induced transitions from a fluid to a nonergodic (jammed) state, showing
zero flow rate in an interval of applied stress. The shear thickening and
jamming scenarios that we explore appear broadly consistent with experiments on
dense colloids close to the glass transition, despite the fact that we ignore
hydrodynamic interactions. In particular, the jamming transition we propose is
conceptually quite different from various hydrodynamic mechanisms of shear
thickening in the literature, although the latter might remain pertinent at
lower colloid densities. Our jammed state is a stress-induced glass, but its
nonergodicity transitions have an analytical structure distinct from that of
the conventional MCT glass transition.Comment: 33 pages; 19 figure
- …