258 research outputs found
Centrality dependence of charged-particle pseudorapidity distributions from d+Au collisions at sqrt(s_{NN})=200 GeV
Charged-particle pseudorapidity densities are presented for the d+Au reaction
at sqrt{s_{NN}}=200 GeV with -4.2 <= eta <= 4.2$. The results, from the BRAHMS
experiment at RHIC, are shown for minimum-bias events and 0-30%, 30-60%, and
60-80% centrality classes. Models incorporating both soft physics and hard,
perturbative QCD-based scattering physics agree well with the experimental
results. The data do not support predictions based on strong-coupling,
semi-classical QCD. In the deuteron-fragmentation region the central 200 GeV
data show behavior similar to full-overlap d+Au results at sqrt{s_{NN}}=19.4
GeV.Comment: 4 pages, 3figures; expanded discussion of uncertainties; added 60-80%
centrality range; added additional discussion on centrality selection bia
High Pt Hadron Spectra at High Rapidity
We report the measurement of charged hadron production at different
pseudo-rapidity values in deuteron+gold as well as proton+proton collisions at
= 200GeV at RHIC. The nuclear modification factors and
are used to investigate new behaviors in the deuteron+gold system as
function of rapidity and the centrality of the collisions respectively.Comment: Nine pages 4 figures to be published in the QM2004 Proceedings, typos
corrected and one reference adde
Charged particle densities from Au+Au collisions at sqrt{s_{NN}}=130 GeV
We present charged particle densities as a function of pseudorapidity and
collision centrality for the 197Au+197Au reaction at sqrt{s_{NN}}=130 GeV. An
integral charged particle multiplicity of 3860+/-300 is found for the 5% most
central events within the pseudorapidity range -4.7 <= eta <= 4.7. At
mid-rapidity an enhancement in the particle yields per participant nucleon pair
is observed for central events. Near to the beam rapidity, a scaling of the
particle yields consistent with the ``limiting fragmentation'' picture is
observed. Our results are compared to other recent experimental and theoretical
discussions of charged particle densities in ultra-relativistic heavy-ion
collisions.Comment: 14 pages, 4 figures; to be published in Phys. Lett.
Nuclear Modification Factor for Charged Pions and Protons at Forward Rapidity in Central Au+Au Collisions at 200 GeV
We present spectra of charged pions and protons in 0-10% central Au+Au
collisions at GeV at mid-rapidity () and forward
pseudorapidity () measured with the BRAHMS experiment at RHIC. The
spectra are compared to spectra from p+p collisions at the same energy scaled
by the number of binary collisions. The resulting nuclear modification factors
for central Au+Au collisions at both and exhibit suppression
for charged pions but not for (anti-)protons at intermediate . The
ratios have been measured up to GeV/ at the two
rapidities and the results indicate that a significant fraction of the charged
hadrons produced at intermediate range are (anti-)protons at both
mid-rapidity and
Forward and midrapidity like-particle ratios from p+p collisions at sqrt(s)=200 GeV
We present a measurement of pi-\pi+, K-/K+ and pbar/p from p+p collisions at
sqrt(s) = 20 0GeV over the rapidity range 0<y<3.4. For pT < 2.0 GeV/c we see no
significant transverse momentum dependence of the ratios. All three ratios are
independent of rapidity for y ~< 1.5 and then steadily decline from y ~ 1.5 to
y ~ 3. The pi-\pi+ ratio is below unity for y > 2.0. The pbar/p ratio is very
similar for p+p and 20% central Au+Au collisions at all rapidities. In the
fragmentation region the three ratios seem to be independent of beam energy
when viewed from the rest frame of one of the protons. Theoretical models based
on quark-diquark breaking mechanisms overestimate the pbar/p ratio up to y ~<
3. Including additional mechanisms for baryon number transport such as baryon
junctions leads to a better description of the data.Comment: 15 pages, 4 figures, uses elsart.sty. Changes to references and
discussion based on referee comments, resubmitted to Phys. Lett.
The New Physics at RHIC. From Transparency to High p Suppression
Heavy ion collisions at RHIC energies (Au+Au collisions at
GeV) exhibit significant new features as compared to
earlier experiments at lower energies. The reaction is characterized by a high
degree of transparency of the collisions partners leading to the formation of a
baryon-poor central region. In this zone, particle production occurs mainly
from the stretching of the color field. The initial energy density is well
above the one considered necessary for the formation of the Quark Gluon Plasma,
QGP. The production of charged particles of various masses is consistent with
chemical and thermal equilibrium. Recently, a suppression of the high
transverse momentum component of hadron spectra has been observed in central
Au+Au collisions. This can be explained by the energy loss experienced by
leading partons in a medium with a high density of unscreened color charges. In
contrast, such high jets are not suppressed in d+Au collisions suggesting
that the high suppression is not due to initial state effects in the
ultrarelativistic colliding nuclei.Comment: 15 pages, 11 figures. to appear in Nucl. Physics A. Invited talk at
'Nucleus-Nucleus Collisions 2003' conference, Mosco
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
RANTES/CCL5 and risk for coronary events: Results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies
Background: The chemokine RANTES (regulated on activation, normal T-cell expressed and secreted)/CCL5 is involved in the pathogenesis of cardiovascular disease in mice, whereas less is known in humans. We hypothesised that its relevance for atherosclerosis should be reflected by associations between CCL5 gene variants, RANTES serum concentrations and protein levels in atherosclerotic plaques and risk for coronary events. Methods and Findings: We conducted a case-cohort study within the population-based MONICA/KORA Augsburg studies. Baseline RANTES serum levels were measured in 363 individuals with incident coronary events and 1,908 non-cases (mean follow-up: 10.2±
Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure
Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies
- …