873 research outputs found

    Human Rights in a Pluralist, Unequal Globe: Contributions of Jesuit Universities

    Get PDF

    Line Emission from Gas in Optically Thick Dust Disks around Young Stars

    Full text link
    We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii ≳0.7\gtrsim 0.7 AU. We present results of disks around ∼1M⊙\sim 1{\rm M}_{\odot} stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7μ\mum, [NeII] 12.8μ\mum, [FeI] 24μ\mum, [SI] 25μ\mum, [FeII] 26μ\mum, [SiII] 35 μ\mum, [OI] 63μ\mum and pure rotational lines of H2_2, H2_2O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to ∼120\sim 120 AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.Comment: Accepted to Astrophysical Journa

    Diffusion-limited reactions and mortal random walkers in confined geometries

    Full text link
    Motivated by the diffusion-reaction kinetics on interstellar dust grains, we study a first-passage problem of mortal random walkers in a confined two-dimensional geometry. We provide an exact expression for the encounter probability of two walkers, which is evaluated in limiting cases and checked against extensive kinetic Monte Carlo simulations. We analyze the continuum limit which is approached very slowly, with corrections that vanish logarithmically with the lattice size. We then examine the influence of the shape of the lattice on the first-passage probability, where we focus on the aspect ratio dependence: Distorting the lattice always reduces the encounter probability of two walkers and can exhibit a crossover to the behavior of a genuinely one-dimensional random walk. The nature of this transition is also explained qualitatively.Comment: 18 pages, 16 figure

    Effective grain surface area in the formation of molecular hydrogen in interstellar clouds

    Full text link
    In the interstellar clouds, molecular hydrogens are formed from atomic hydrogen on grain surfaces. An atomic hydrogen hops around till it finds another one with which it combines. This necessarily implies that the average recombination time, or equivalently, the effective grain surface area depends on the relative numbers of atomic hydrogen influx rate and the number of sites on the grain. Our aim is to discover this dependency. We perform a numerical simulation to study the recombination of hydrogen on grain surfaces in a variety of cloud conditions. We use a square lattice (with a periodic boundary condition) of various sizes on two types of grains, namely, amorphous carbon and olivine. We find that the steady state results of our simulation match very well with those obtained from a simpler analytical consideration provided the `effective' grain surface area is written as ∼Sα\sim S^{\alpha}, where, SS is the actual physical grain area and α\alpha is a function of the flux of atomic hydrogen which is determined from our simulation. We carry out the simulation for various astrophysically relevant accretion rates. For high accretion rates, small grains tend to become partly saturated with HH and H2H_2 and the subsequent accretion will be partly inhibited. For very low accretion rates, the number of sites to be swept before a molecular hydrogen can form is too large compared to the actual number of sites on the grain, implying that α\alpha is greater than unity.Comment: 8 pages, 5 figures in eps forma

    Tracing Slow Winds from T Tauri Stars via Low Velocity Forbidden Line Emission

    Get PDF
    Using Keck/HIRES spectra {\Delta}v ~ 7 km/s, we analyze forbidden lines of [O I] 6300 {\AA}, [O I] 5577 {\AA} and [S II] 6731 {\AA} from 33 T Tauri stars covering a range of disk evolutionary stages. After removing a high velocity component (HVC) associated with microjets, we study the properties of the low velocity component (LVC). The LVC can be attributed to slow disk winds that could be magnetically (MHD) or thermally (photoevaporative) driven. Both of these winds play an important role in the evolution and dispersal of protoplanetary material. LVC emission is seen in all 30 stars with detected [O I] but only in 2 out of eight with detected [S II] , so our analysis is largely based on the properties of the [O I] LVC. The LVC itself is resolved into broad (BC) and narrow (NC) kinematic components. Both components are found over a wide range of accretion rates and their luminosity is correlated with the accretion luminosity, but the NC is proportionately stronger than the BC in transition disks. The FWHM of both the BC and NC correlates with disk inclination, consistent with Keplerian broadening from radii of 0.05 to 0.5 AU and 0.5 to 5 AU, respectively. The velocity centroids of the BC suggest formation in an MHD disk wind, with the largest blueshifts found in sources with closer to face-on orientations. The velocity centroids of the NC however, show no dependence on disk inclination. The origin of this component is less clear and the evidence for photoevaporation is not conclusive

    The Photoevaporative Wind from the Disk of TW Hya

    Full text link
    Photoevaporation driven by the central star is expected to be a ubiquitous and important mechanism to disperse the circumstellar dust and gas from which planets form. Here, we present a detailed study of the circumstellar disk surrounding the nearby star TW Hya and provide observational constraints to its photoevaporative wind. Our new high-resolution (R ~ 30,000) mid-infrared spectroscopy in the [Ne II] 12.81 {\mu}m line confirms that this gas diagnostic traces the unbound wind component within 10AU from the star. From the blueshift and asymmetry in the line profile, we estimate that most (>80%) of the [Ne II] emission arises from disk radii where the midplane is optically thick to the redshifted outflowing gas, meaning beyond the 1 or 4AU dust rim inferred from other observations. We re-analyze high-resolution (R ~ 48, 000) archival optical spectra searching for additional transitions that may trace the photoevaporative flow. Unlike the [Ne II] line, optical forbidden lines from OI, SII, and MgI are centered at the stellar velocity and have symmetric profiles. The only way these lines could trace the photoevaporative flow is if they arise from a disk region physically distinct from that traced by the [Ne II] line, specifically from within the optically thin dust gap. However, the small (~10 km/s) FWHM of these lines suggest that most of the emitting gas traced at optical wavelengths is bound to the system rather than unbound. We discuss the implications of our results for a planet-induced versus a photoevaporation-induced gap.Comment: Accepted for publication in Ap

    Far Field Monitoring of Rogue Nuclear Activity with an Array of Large anti-neutrino Detectors

    Get PDF
    The result of a study on the use of an array of large anti-neutrino detectors for the purpose of monitoring rogue nuclear activity is presented. Targeted regional monitoring of a nation bordering large bodies of water with no pre-existing legal nuclear activity may be possible at a cost of about several billion dollars, assuming several as-yet-untested schemes pan out in the next two decades. These are: (1) the enabling of a water-based detector to detect reactor anti-neutrinos by doping with GdCl3_3; (2) the deployment of a KamLAND-like detector in a deep-sea environment; and (3) the scaling of a Super-Kamiokande-like detector to a size of one or more megatons. The first may well prove feasible, and should be tested by phase-III Super-Kamiokande in the next few years. The second is more of a challenge, but may well be tested by the Hanohano collaboration in the coming decade. The third is perhaps the least certain, with no schedule for construction of any such device in the foreseeable future. In addition to the regional monitoring scheme, several global, untargeted monitoring schemes were considered. All schemes were found to fail benchmark sensitivity levels by a wide margin, and to cost at least several trillion dollars.Comment: 17 pages, 8 figures, proceedings for Neutrino Sciences 2005, submitted to Earth, Moon, and Planet

    Photoevaporation of Circumstellar Disks due to External FUV Radiation in Stellar Aggregates

    Full text link
    When stars form in small groups (N = 100 - 500 members), their circumstellar disks are exposed to little EUV radiation but a great deal of FUV radiation from massive stars in the group. This paper calculates mass loss rates for circumstellar disks exposed to external FUV radiation. Previous work treated large disks and/or intense radiation fields in which the disk radius exceeds the critical radius (supercritical disks) where the sound speed in the FUV heated layer exceeds the escape speed. This paper shows that significant mass loss still takes place for subcritical systems. Some of the gas extends beyond the disk edge (above the disk surface) to larger distances where the temperature is higher, the escape speed is lower, and an outflow develops. The evaporation rate is a sensitive function of the stellar mass and disk radius, which determine the escape speed, and the external FUV flux, which determines the temperature structure of the flow. Disks around red dwarfs are readily evaporated and shrink to disk radii of 15 AU on short time scales (10 Myr) when exposed to moderate FUV fields with G0G_0 = 3000. Although disks around solar type stars are more durable, these disks shrink to 15 AU in 10 Myr for intense FUV radiation fields with G0G_0 = 30,000; such fields exist in the central 0.7 pc of a cluster with N = 4000 stars. If our solar system formed in the presence of such strong FUV radiation fields, this mechanism could explain why Neptune and Uranus in our solar system are gas poor, whereas Jupiter and Saturn are gas rich. This mechanism for photoevaporation can also limit the production of Kuiper belt objects and can suppress giant planet formation in sufficiently large clusters, such as the Hyades, especially for disks associated with low mass stars.Comment: 49 pages including 12 figures; accepted to Ap

    Probing X-ray irradiation in the nucleus of NGC 1068 with observations of high-J lines of dense gas tracers

    Get PDF
    With the incorporation of high-J molecular lines, we aim to constrain the physical conditions of the dense gas in the central region of the Seyfert 2 galaxy NGC 1068 and to determine signatures of the AGN or the starburst contribution. We used the James Clerk Maxwell Telescope to observe the J=4-3 transition of HCN, HNC, and HCO+, as well as the CN N_J=2_{5/2}-1_{3/2} and N_J=3_{5/2}-2_{5/2}, in NGC 1068. We estimate the excitation conditions of HCN, HNC, and CN, based on the line intensity ratios and radiative transfer models. We find that the bulk emission of HCN, HNC, CN, and the high-J HCO+ emerge from dense gas n(H_2)>=10^5 cm^-3). However, the low-J HCO+ lines (dominating the HCO+ column density) trace less dense (n(H_2)<10^5 cm^-3) and colder (T_K30 K) gas than the other molecules. The HCO+ J=4-3 line intensity, compared with the lower transition lines and with the HCN J=4-3 line, support the influence of a local XDR environment. The estimated N(CN)/N(HCN)~1-4 column density ratios are indicative of an XDR/AGN environment with a possible contribution of grain-surface chemistry induced by X-rays or shocks.Comment: Main text: 8 pages, 5 tables, 1 figure. Appendix: 7 pages, 1 table, 8 figures. Accepted for publication in A&
    • …
    corecore