64 research outputs found
A Marine Anthraquinone SZ-685C Overrides Adriamycin-Resistance in Breast Cancer Cells through Suppressing Akt Signaling
Breast cancer remains a major health problem worldwide. While chemotherapy represents an important therapeutic modality against breast cancer, limitations in the clinical use of chemotherapy remain formidable because of chemoresistance. The HER2/PI-3K/Akt pathway has been demonstrated to play a causal role in conferring a broad chemoresistance in breast cancer cells and thus justified to be a target for enhancing the effects of anti-breast cancer chemotherapies, such as adriamycin (ADR). Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. In this context, SZ-685C, an agent that has been previously shown, as such, to suppress Akt signaling, is expected to increase the efficacy of chemotherapy. Our current study investigated whether SZ-685C can override chemoresistance through inhibiting Akt signaling in human breast cancer cells. ADR-resistant cells derived from human breast cancer cell lines MCF-7, MCF-7/ADR and MCF-7/Akt, were used as models to test the effects of SZ-685C. We found that SZ-685C suppressed the Akt pathway and induced apoptosis in MCF-7/ADR and MCF-7/Akt cells that are resistant to ADR treatment, leading to antitumor effects both in vitro and in vivo. Our data suggest that use of SZ-685C might represent a potentially promising approach to the treatment of ADR-resistant breast cancer
Melanocortin receptor accessory proteins in adrenal disease and obesity.
Melanocortin receptor accessory proteins (MRAPs) are regulators of the melanocortin receptor family. MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency type 2. The role of its paralog melanocortin-2-receptor accessory protein 2 (MRAP2), which is predominantly expressed in the hypothalamus including the paraventricular nucleus, has recently been linked to mammalian obesity. Whole body deletion and targeted brain specific deletion of the Mrap2 gene result in severe obesity in mice. Interestingly, Mrap2 complete knockout (KO) mice have increased body weight without detectable changes to food intake or energy expenditure. Rare heterozygous variants of MRAP2 have been found in humans with severe, early-onset obesity. In vitro data have shown that Mrap2 interaction with the melanocortin-4-receptor (Mc4r) affects receptor signaling. However, the mechanism by which Mrap2 regulates body weight in vivo is not fully understood and differences between the phenotypes of Mrap2 and Mc4r KO mice may point toward Mc4r independent mechanisms
Anticancer prodrugs of butyric acid and formaldehyde protect against doxorubicin-induced cardiotoxicity
Formaldehyde has been previously shown to play a dominant role in promoting synergy between doxorubicin (Dox) and formaldehyde-releasing butyric acid (BA) prodrugs in killing cancer cells. In this work, we report that these prodrugs also protect neonatal rat cardiomyocytes and adult mice against toxicity elicited by Dox. In cardiomyocytes treated with Dox, the formaldehyde releasing prodrugs butyroyloxymethyl diethylphosphate (AN-7) and butyroyloxymethyl butyrate (AN-1), but not the corresponding acetaldehyde-releasing butyroyloxydiethyl phosphate (AN-88) or butyroyloxyethyl butyrate (AN-11), reduced lactate dehydrogenase leakage, prevented loss of mitochondrial membrane potential (ΔΨm) and attenuated upregulation of the proapoptotic gene Bax. In Dox-treated mice, AN-7 but not AN-88 attenuated weight-loss and mortality, and increase in serum lactate dehydrogenase. These findings show that BA prodrugs that release formaldehyde and augment Dox anticancer activity also protect against Dox cardiotoxicity. Based on these observations, clinical applications of these prodrugs for patients treated with Dox warrant further investigation
Effects of therapy with [177Lu-DOTA0,Tyr3]octreotate on endocrine function
Purpose: Peptide receptor radionuclide therapy (PRRT) with radiolabelled somatostatin analogues is a novel therapy for patients with somatostatin receptor-positive tumours. We determined the effects of PRRT with [177Lu-DOTA0,Tyr3]octreotate (177Lu-octreotate) on glucose homeostasis and the pituitary-gonadal, pituitary-thyroid and pituitary-adrenal axes. Methods: Hormone levels were measured and adrenal function assessed at baseline and up to 24 months of follow-up. Results: In 35 men, mean serum inhibin B levels were decreased at 3 months post-therapy (205 ± 16 to 25 ± 4 ng/l, p 550 nmol/l, n = 18). Five patients developed elevated HbA1clevels (> 6.5%). Conclusion: In men177Lu-octreotate therapy induced transient inhibitory effects on spermatogenesis, but non-SHBG-bound T levels remained unaffected. In the long term, gonadotropin levels decreased significantly in postmenopausal women. Only a few patients developed hypothyroidism or elevated levels of HbA1c. Therefore, PRRT with177Lu-octreotate can be regarded as a safe treatment modality with respect to short-and long-term endocrine function
Effect of remote ischemic conditioning on atrial fibrillation and outcome after coronary artery bypass grafting (RICO-trial)
Background: Pre- and postconditioning describe mechanisms whereby short ischemic periods protect an organ against a longer period of ischemia. Interestingly, short ischemic periods of a limb, in itself harmless, may increase the ischemia tolerance of remote organs, e.g. the heart (remote conditioning, RC). Although several studies have shown reduced biomarker release by RC, a reduction of complications and improvement of patient outcome still has to be demonstrated. Atrial fibrillation (AF) is one of the most common complications after coronary artery bypass graft surgery (CABG), affecting 27-46% of patients. It is associated with increased mortality, adverse cardiovascular events, and prolonged in-hospital stay. We hypothesize that remote ischemic pre- and/or post-conditioning reduce the incidence of AF following CABG, and improve patient outcome.Methods/design: This study is a randomized, controlled, patient and investigator blinded multicenter trial. Elective CABG patients are randomized to one of the following four groups: 1) control, 2) remote ischemic preconditioning, 3) remote ischemic postconditioning, or 4) remote ischemic pre- and postconditioning. Remote conditio
Medical treatment of prolactinomas.
Prolactinomas, the most prevalent type of neuroendocrine disease, account for approximately 40% of all pituitary adenomas. The most important clinical problems associated with prolactinomas are hypogonadism, infertility and hyposexuality. In patients with macroprolactinomas, mass effects, including visual field defects, headaches and neurological disturbances, can also occur. The objectives of therapy are normalization of prolactin levels, to restore eugonadism, and reduction of tumor mass, both of which can be achieved in the majority of patients by treatment with dopamine agonists. Given their association with minimal morbidity, these drugs currently represent the mainstay of treatment for prolactinomas. Novel data indicate that these agents can be successfully withdrawn in a subset of patients after normalization of prolactin levels and tumor disappearance, which suggests the possibility that medical therapy may not be required throughout life. Nevertheless, multimodal therapy that involves surgery, radiotherapy or both may be necessary in some cases, such as patients who are resistant to the effects of dopamine agonists or for those with atypical prolactinomas. This Review reports on efficacy and safety of pharmacotherapy in patients with prolactinomas
- …