24,571 research outputs found
Method of damping nutation motion with minimum spin axis attitude disturbance
In a method of and apparatus for damping nutation of a spinning spacecraft, spin axis attitude disturbances are substantially reduced by controlling at least one nutation damping gas thruster to fire with nonuniform gas pulses. During the beginning of a nutation control sequence, the duration of successive gas pulses is gradually increased (up pulsed) from zero to a predetermined maximum duration. The duration of successive pulses is then maintained constant for a time period. Finally, at the end of the nutation control sequence, the duration of successive gas pulses is gradually reduced to zero (down pulsed). Up pulsing of the gas thruster is initiated in response to a predetermined maximum nutation angle measured by an accelerometer. Down pulsing of the thruster is initiated in response to a predetermined minimum nutation angle
Active nutation controller
An apparatus is described for controlling nutation motion in a spinning body, comprised of an angular accelerometer with its input axis perpendicular to the spin axis of the body, a flywheel with an axis of rotation perpendicular to the axis of the accelerometer and to the spin axis of the body, and a motor for driving the flywheel to attenuate or build nutation. The motor is controlled by circuitry that monitors the output of the angular accelerometer and drives the motor clockwise or counterclockwise during predetermined nutation angles synchronized to the zero crossover points of the accelerometer signal centered about the nutation peaks. The motor drive is phased to damp nutation motion to zero for stabilization. To increase the noise immunity of the system, when the output of the accelerometer falls below a threshold level, the circuitry operates in an open loop, beat mode where data representing the last accelerometer signal that exceeded that threshold level is stored, and the motor drive is controlled by the stored data. In a second version, the motor is controlled to supply a predetermined amount of nutation motion to a body undergoing testing on a spin table for energy dissipation evaluation. In each version, the use of an angular accelerometer rather than a linear accelerometer or gyro to monitor nutation enables placement of the nutation control apparatus at any location relative to the spin axis of the body requiring only crude orientation and no calibration
Gravity gradient attitude control system Patent
Gravity gradient attitude control system with gravity gradiometer and reaction wheels for artificial satellite attitude contro
Ionospheric and magnetospheric plasmapauses'
During August 1972, Explorer 45 orbiting near the equatorial plane with an apogee of about 5.2 R sub e traversed magnetic field lines in close proximity to those simultaneously traversed by the topside ionospheric satellite ISIS 2 near dusk in the L range 2-5.4. The locations of the Explorer 45 plasmapause crossings during this month were compared to the latitudinal decreases of the H(+) density observed on ISIS 2 near the same magnetic field lines. The equatorially determined plasmapause field lines typically passed through or poleward of the minimum of the ionospheric light ion trough, with coincident satellite passes occurring for which the L separation between the plasmapause and trough field lines was between 1 and 2. Vertical flows of the H(+) ions in the light ion trough as detected by the magnetic ion mass spectrometer on ISIS were directed upward with velocities between 1 and 2 kilometers/sec near dusk on these passes. These velocities decreased to lower values on the low latitude side of the H(+) trough but did not show any noticeable change across the field lines corresponding to the magnetospheric plasmapause
A spacecraft digital stabilization and control system study
Digital techniques to increase reliability and accuracy of spacecraft control and stabilization system
Off-lattice Monte Carlo Simulation of Supramolecular Polymer Architectures
We introduce an efficient, scalable Monte Carlo algorithm to simulate
cross-linked architectures of freely-jointed and discrete worm-like chains.
Bond movement is based on the discrete tractrix construction, which effects
conformational changes that exactly preserve fixed-length constraints of all
bonds. The algorithm reproduces known end-to-end distance distributions for
simple, analytically tractable systems of cross-linked stiff and freely jointed
polymers flawlessly, and is used to determine the effective persistence length
of short bundles of semi-flexible worm-like chains, cross-linked to each other.
It reveals a possible regulatory mechanism in bundled networks: the effective
persistence of bundles is controlled by the linker density.Comment: 4 pages, 4 figure
The magnetoresistance tensor of La(0.8)Sr(0.2)MnO(3)
We measure the temperature dependence of the anisotropic magnetoresistance
(AMR) and the planar Hall effect (PHE) in c-axis oriented epitaxial thin films
of La(0.8)Sr(0.2)MnO(3), for different current directions relative to the
crystal axes, and show that both AMR and PHE depend strongly on current
orientation. We determine a magnetoresistance tensor, extracted to 4th order,
which reflects the crystal symmetry and provides a comprehensive description of
the data. We extend the applicability of the extracted tensor by determining
the bi-axial magnetocrystalline anisotropy in our samples
The swept angle retarding mass spectrometer: Initial results from the Michigan auroral probe sounding rocket
Data from a sounding rocket flight of the swept angle retarding ion mass spectrometer (SARIMS) are presented to demonstrate the capability of the instrument to make measurements of thermal ions which are differential in angle, energy, and mass. The SARIMS was flown on the Michigan auroral probe over regions characterized first by discrete auroral arcs and later by diffuse precipitation. The instrument measured the temperature, densities, and flow velocities of the ions NO(+) and O(+). Measured NO(+) densities ranged from 10 to the 5th power up to 3 x 10 to the 5th power ions/cu cm, while the measured O(+) densities were a factor of 5-10 less. Ion temperatures ranged from 0.15 up to 0.33 eV. Eastward ion flows approximately 0.5 km/sec were measured near the arcs, and the observed flow magnitude decreased markedly inside the arcs
- …