80 research outputs found

    AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions.

    Get PDF
    AMPA receptor (AMPAR) abundance and positioning at excitatory synapses regulates the strength of transmission. Changes in AMPAR localisation can enact synaptic plasticity, allowing long-term information storage, and is therefore tightly controlled. Multiple mechanisms regulating AMPAR synaptic anchoring have been described, but with limited coherence or comparison between reports, our understanding of this process is unclear. Here, combining synaptic recordings from mouse hippocampal slices and super-resolution imaging in dissociated cultures, we compare the contributions of three AMPAR interaction domains controlling transmission at hippocampal CA1 synapses. We show that the AMPAR C-termini play only a modulatory role, whereas the extracellular N-terminal domain (NTD) and PDZ interactions of the auxiliary subunit TARP γ8 are both crucial, and each is sufficient to maintain transmission. Our data support a model in which γ8 accumulates AMPARs at the postsynaptic density, where the NTD further tunes their positioning. This interplay between cytosolic (TARP γ8) and synaptic cleft (NTD) interactions provides versatility to regulate synaptic transmission and plasticity

    The gains and losses of face in ongoing intercultural interaction: A case study of Chinese participant perspectives

    Get PDF
    Given the small number of existing studies of face in intercultural settings and the increasing attention given to participant perspectives in face research, this paper explores the gains and losses of face as perceived by Chinese government officials during a three-week delegation visit to the United States of America. These perspectives were obtained from the group’s spontaneous discussions during regular evening meetings when they reflected on the day’s events. Several key features emerged from the discussions. Firstly, face enhancement was a primary goal for the visit – enhancement of their own face as a delegation, of the face of the Ministry they belonged to, as well as the face of their American hosts. Secondly, the delegates attempted to manage these face goals strategically. Thirdly, they spoke of face as a volatile image that could rise and fall sharply and yet endured across incidents, days and weeks. The paper reports on and discusses these participant perspectives in the light of recent theorizing on face

    Chaotic properties of a turbulent isotropic fluid

    Get PDF
    By tracking the divergence of two initially close trajectories in phase space in an Eulerian approach to forced turbulence, the relation between the maximal Lyapunov exponent λ\lambda, and the Reynolds number ReRe is measured using direct numerical simulations, performed on up to 204832048^3 collocation points. The Lyapunov exponent is found to solely depend on the Reynolds number with λRe0.53\lambda \propto Re^{0.53} and that after a transient period the divergence of trajectories grows at the same rate at all scales. Finally a linear divergence is seen that is dependent on the energy forcing rate. Links are made with other chaotic systems.Comment: 8 pages, 8 figure

    The uses of coherent structure (Dryden Lecture)

    Get PDF
    The concept of coherent structure in turbulent flow is a revolutionary idea which is being developed by evolutionary means. The main objective of this review is to list some solid achievements, showing what can be done by using the concept of coherent structure that cannot be done without it. The nature of structure is described in terms of some related concepts, including celerity, topology, and the phenomenon of coalescence and splitting of structure. The main emphasis is on the mixing layer, as the one flow whose structure is well enough understood so that technical applications are now being made in problems of mixing and chemistry. An attempt is made to identify some conceptual and experimental obstacles that stand in the way of progress in other technically important flows, particularly the turbulent boundary layer. A few comments are included about the role of structure in numerical simulations and in current work on manipulation and control of turbulent flow. Some recent developments are cited which suggest that the time is nearly right for corresponding advances to occur in turbulence modeling

    Effects of wind speed changes on wake instability of a wind turbine in a virtual wind tunnel using large eddy simulation

    Get PDF
    Large Eddy Simulation (LES) of the National Renewable Energy Laboratory (NREL) Phase VI wind turbine inside a virtual wind tunnel, with the same test section as that of NASA Ames 24.4. m×36.6. m, was carried out in order to analyze and better understand the wake instability and its breakdown behind the wind turbine. LES was performed using the commercial CFD software, ANSYS FLUENT, based on the dynamic Smagorinsky-Lilly model. The wind turbine was placed at a distance of two rotor diameters from the upstream boundary with a downstream domain of 20 rotor diameters in length. The results of the simulation were compared with the experimental data published by the NREL and a good agreement was found between the two. Furthermore, the average turbulence intensities from the LES were compared with a semi-empirical model and very good agreement was observed, except for the regions of on-going wake instability and vortex breakdown. It was observed that the wake behind the wind turbine consists of a system of intense and stable rotating helical vortices. These vortices persisted for some distance downstream of the wind turbine and finally become unstable producing a sinuous shape. The downstream distance at which wake instability and vortex breakdown occur, was observed to be a function of the upstream wind speed. For example, for an upstream wind speed of 7. m/s, it was observed that the primary vortex structure became unstable at a downstream distance of four rotor diameters and complete breakdown occurred at approximately six rotor diameters. On the other hand, when the upstream wind speed was 15.1. m/s, wake instability occurred at approximately 11 rotor diameters downstream of the wind turbine and complete breakdown was observed at 13 rotor diameters downstream of the wind turbine. Furthermore, it was observed that the turbulence intensity rapidly decreased during the process of wake instability and vortex breakdown; the location of the decrease is a function of the upstream wind speed. It is suggested that the distinction between the near and far wake can be identified as the average location between the start of the wake instability and the end of the process, at complete breakdown. Therefore the average location of this boundary is a function of the upstream wind speed. Hence for upstream wind speeds of 7. m/s, 10. m/s, 13.1. m/s and 15.1. m/s, the boundary between the near and far wake lies at five, seven, ten and twelve rotor diameters downstream respectively. © 2013 Elsevier Ltd.Jang-Oh Mo, Amanullah Choudhry, Maziar Arjomandi, Richard Kelso, Young-Ho Le

    Structural mobility tunes signalling of the GluA1 AMPA glutamate receptor

    Full text link
    AMPA glutamate receptors (AMPARs), the primary mediators of excitatory neurotransmission in the brain, are either GluA2 subunit-containing and thus Ca2+-impermeable, or GluA2-lacking and Ca2+-permeable1. Despite their prominent expression throughout interneurons and glia, their role in long-term potentiation and their involvement in a range of neuropathologies2, structural information for GluA2-lacking receptors is currently absent. Here we determine and characterize cryo-electron microscopy structures of the GluA1 homotetramer, fully occupied with TARPγ3 auxiliary subunits (GluA1/γ3). The gating core of both resting and open-state GluA1/γ3 closely resembles GluA2-containing receptors. However, the sequence-diverse N-terminal domains (NTDs) give rise to a highly mobile assembly, enabling domain swapping and subunit re-alignments in the ligand-binding domain tier that are pronounced in desensitized states. These transitions underlie the unique kinetic properties of GluA1. A GluA2 mutant (F231A) increasing NTD dynamics phenocopies this behaviour, and exhibits reduced synaptic responses, reflecting the anchoring function of the AMPAR NTD at the synapse. Together, this work underscores how the subunit-diverse NTDs determine subunit arrangement, gating properties and ultimately synaptic signalling efficiency among AMPAR subtypes.Peer reviewe
    corecore