14 research outputs found

    Selective carbon sources and salinities enhance enzymes and extracellular polymeric substances extrusion of Chlorella sp. for potential co-metabolism.

    Full text link
    This study investigated the extracellular polymeric substance (EPS) and enzyme extrusion of Chlorella sp. using seven carbon sources and two salinities for potential pollutant co-metabolism. Results indicated that the levels of biomass, EPS and enzymes of microalgae cultured with glucose and saccharose outcompeted other carbon sources. For pigment production, glycine received the highest chlorophyll and carotene, up to 10 mg/L. The EPS reached 30 mg/L, having doubled the amount of protein than carbohydrate. For superoxide dismutase and peroxidase enzymes, the highest concentrations were beyond 60 U/ml and 6 nmol/d.ml, respectively. This amount could be potentially used for degrading 40% ciprofloxacin of concentration 2000 µg/L. When increasing salinity from 0.1% to 3.5%, the concentrations of pigment, EPS and enzymes rose 3 to 30 times. These results highlighted that certain carbon sources and salinities could induce Chlorella sp. to produce EPS and enzymes for pollutant co-metabolism and also for revenue-raising potential

    A critical review on designs and applications of microalgae-based photobioreactors for pollutants treatment

    Full text link
    © 2018 Elsevier B.V. The development of the photobioreactors (PBs) is recently noticeable as cutting-edge technology while the correlation of PBs' engineered elements such as modellings, configurations, biomass yields, operating conditions and pollutants removal efficiency still remains complex and unclear. A systematic understanding of PBs is therefore essential. This critical review study is to: (1) describe the modelling approaches and differentiate the outcomes; (2) review and update the novel technical issues of PBs' types; (3) study microalgae growth and control determined by PBs types with comparison made; (4) progress and compare the efficiencies of contaminants removal given by PBs' types and (5) identify the future perspectives of PBs. It is found that Monod model's shortcoming in internal substrate utilization is well fixed by modified Droop model. The corroborated data also remarks an array of PBs' types consisting of flat plate, column, tubular, soft-frame and hybrid configuration in which soft-frame and hybrid are the latest versions with higher flexibility, performance and smaller foot-print. Flat plate PBs is observed with biomass yield being 5 to 20 times higher than other PBs types while soft-frame and membrane PBs can also remove pharmaceutical and personal care products (PPCPs) up to 100%. Looking at an opportunity for PBs in sustainable development, the flat plate PBs are applicable in PB-based architectures and infrastructures indicating an encouraging revenue-raising potential

    Advances of Photobioreactors in Wastewater Treatment: Engineering Aspects, Applications and Future Perspectives

    Full text link
    The photobioreactor is an efficient artificial system in terms of biomass cultivation and removing pollutants. Compared to other conventional technologies, its design and operational processes are superior. Therefore, the photobioreactor specifically targets and tailors for the increasing demand for biomass and stringent pollutants removal standards. Since the early 1950s, there has been a variety of photobioreactor types, and these have been addressing the different technical issues over time and others more recently. As well, diverse applications of the photobioreactor process are becoming more widespread, and this opens for a good opportunity for future sustainable developments. This book chapter discusses advances being made in photobioreactor technology, encompassing: (1) modelling; (2) designs and classifications; (3) applications and (4) future perspectives

    Microalgae for saline wastewater treatment: a critical review

    Full text link
    © 2019, © 2019 Taylor & Francis Group, LLC. Saline wastewater contains numerous pollutants such as nutrients, heavy metals, micropollutants, and organic pollutants. This kind of wastewater needs to be treated prior to discharging. Compared to other technologies for saline wastewater treatment, the microalgae process is considered to be ‘green’ or environmentally friendly as it generates no secondary pollutants and creates profit. To elucidate the issue, this review investigated the following: (1) the nature of saline wastewater; (2) adaptation of microalgae in saline wastewater; (3) pollutants’ remediation by microalgae in saline wastewater; (4) comparisons with other technologies; and (5) future perspectives. Most importantly, during microalgae process, the saline wastewater is transformed from a waste into a source for biofuel and pigment production. This trend implies to heal the environment, cut remediation expenses and raise revenue

    Removal and monitoring acetaminophen-contaminated hospital wastewater by vertical flow constructed wetland and peroxidase enzymes

    Full text link
    © 2019 Elsevier Ltd Hospital wastewater contains acetaminophen (ACT) and nutrient, which need adequate removal and monitoring to prevent impact to environment and community. This study developed a pilot scale vertical flow constructed wetland (CW) to (1) remove high-dose ACT and pollutants in hospital wastewater and (2) identify the correlation of peroxidase enzyme extruded by Scirpus validus and pollutants removal efficiency. By that correlation, a low-cost method to monitor pollutants removal was drawn. Plants, such as Scirpus validus, generated peroxidase enzymes to alleviate pollutants’ stress. Results showed that the CW removed 3.5 to 6 logs of initial concentration 10 mg ACT/L to a recommended level for drinking water. The CW eliminated COD, TKN and TP efficiently, meeting the wastewater discharged standards of Thailand and Vietnam. By various multivariable regression models, concentrations of ACT in CW effluent and enzymes in S. validus exhibited a significant correlation (p < 0.01, R2 = 68.3%). These findings suggested that (i) vertical flow CW could remove high-dose ACT and nutrient and (ii) peroxidase enzymes generated in S. validus, such as soluble and covalent ones, could track ACT removal efficiency. This would help to reduce facilities and analytical cost of micro-pollutants

    Identification of the pollutants’ removal and mechanism by microalgae in saline wastewater

    Full text link
    © 2018 Elsevier Ltd This study investigated the growth dynamics of a freshwater and marine microalgae with supported biochemical performance in saline wastewater, the pollutants assimilation by a developed method, and the mechanism of salinity's effect to pollutants assimilation. Maximal biomass yield was 400–500 mg/L at 0.1–1% salinity while the TOC, NO3−-N, PO43−-P were eliminated 39.5–92.1%, 23–97.4% and 7–30.6%, respectively. The biomass yield and pollutants removal efficiencies reduced significantly when salinity rose from 0.1 to 5%. The freshwater Chlorella vulgaris performed its best with a focus on TOC removal at 0.1% salinity. The marine Chlorella sp. was prominent for removing NO3−-N at 0.1–1% salinity. Through the developed method, the freshwater C. vulgaris competed to the marine microalgae referring to pollutants assimilation up to 5% salinity. This study unveiled the mechanism of salinity's effect with evidence of salt layer formation and salt accumulation in microalgae

    Effect of calcium peroxide pretreatment on the remediation of sulfonamide antibiotics (SMs) by Chlorella sp.

    Full text link
    This study investigated the effect of CaO2 pretreatment on sulfonamide antibiotics (SMs) remediation by Chlorella sp. Results showed that a CaO2 dose ranging from 0.05 to 0.1 g/g biomass was the best and led to higher SMs removal efficacy 5-10% higher than the control. The contributions made by cometabolism and CaO2 in SMs remediation were very similar. Bioassimilation could remove 24% of sulfadiazine (SDZ) and sulfamethazine (SMZ), and accounted for 38% of sulfamethoxazole (SMX) remediation. Pretreatment by CaO2 wielded a positive effect on microalgae. The extracellular polymeric substances (EPS) level of the CaO2 pretreatment microalgae was three times higher when subjected to non-pretreatment. For the long-term, pretreatment microalgae removed SMs 10-20% more than the non-pretreatment microalgae. Protein fractions of EPS in continuous operation produced up to 90 mg/L for cometabolism. For bioassimilation, SMX intensity of the pretreatment samples was 160-fold less than the non-treatment one. It indicated the CaO2 pretreatment has enhanced the biochemical function of the intracellular environment of microalgae. Peroxidase enzyme involved positively in the cometabolism and degradation of SMs to several metabolites including ring cleavage, hydroxylation and pterin-related conjugation

    Micropollutants cometabolism of microalgae for wastewater remediation: Effect of carbon sources to cometabolism and degradation products.

    Full text link
    This study investigated the impacts of selective sole carbon source-induced micropollutants (MPs) cometabolism of Chlorella sp. by: (i) extracellular polymeric substances (EPS), superoxide dismutase and peroxidase enzyme production; (ii) MPs removal efficiency and cometabolism rate; (iii) MPs' potential degradation products identification; and (iv) degradation pathways and validation using the Eawag database to differentiate the cometabolism of Chlorella sp. with other microbes. Adding the sole carbon sources in the presence of MPs increased EPS and enzyme concentrations from 2 to 100-fold in comparison with only sole carbon sources. This confirmed that MPs cometabolism had occurred. The removal efficiencies of tetracycline, sulfamethoxazole, and bisphenol A ranged from 16-99%, 32-92%, and 58-99%, respectively. By increasing EPS and enzyme activity, the MPs concentrations accumulated in microalgae cells also fell 400-fold. The cometabolism process resulted in several degradation products of MPs. This study drew an insightful understanding of cometabolism for MPs remediation in wastewater. Based on the results, proper carbon sources for microalgae can be selected for practical applications to remediate MPs in wastewater while simultaneously recovering biomass for several industries and gaining revenue

    New Insights into the Occurrence of Micropollutants and the Management and Treatment of Hospital Effluent

    No full text
    This chapter deals with investigations carried out over the last five years on hospital effluent in terms of the occurrence of micropollutants; new and promising technologies tested to improve the removal of key compounds (including emerging contaminants); the environmental and health risk assessments of pharmaceuticals residues and pathogens; and, finally, some of the strategies adopted in hospital effluent management and treatments through the discussion of some case studies. It emerges that the occurrence and treatment of hospital effluent are becoming issues of increasing concern also for countries such as Morocco, Tunisia, Iran and Colombia, whose research groups had not actively participated in the worldwide debate thus far. Their interest in these topics highlights the shared, global awareness of the need to adopt safe, economic and technically feasible technologies for the treatment of hospital effluent to reduce the impact on the aquatic environment of hazardous substances typically administered or used in healthcare facilities. The experiences reported and discussed herein demonstrate the worldwide efforts that have been made and are still ongoing with the aim of reaching Sustainable Millennium Goal number 6 “Improve Clean Water and Sanitation” by 2030, as defined by the World Health Organization
    corecore