7 research outputs found

    Mining the human phenome using allelic scores that index biological intermediates

    Get PDF
    J. Kaprio ja M-L. Lokki työryhmien jäseniä.It is common practice in genome-wide association studies (GWAS) to focus on the relationship between disease risk and genetic variants one marker at a time. When relevant genes are identified it is often possible to implicate biological intermediates and pathways likely to be involved in disease aetiology. However, single genetic variants typically explain small amounts of disease risk. Our idea is to construct allelic scores that explain greater proportions of the variance in biological intermediates, and subsequently use these scores to data mine GWAS. To investigate the approach's properties, we indexed three biological intermediates where the results of large GWAS meta-analyses were available: body mass index, C-reactive protein and low density lipoprotein levels. We generated allelic scores in the Avon Longitudinal Study of Parents and Children, and in publicly available data from the first Wellcome Trust Case Control Consortium. We compared the explanatory ability of allelic scores in terms of their capacity to proxy for the intermediate of interest, and the extent to which they associated with disease. We found that allelic scores derived from known variants and allelic scores derived from hundreds of thousands of genetic markers explained significant portions of the variance in biological intermediates of interest, and many of these scores showed expected correlations with disease. Genome-wide allelic scores however tended to lack specificity suggesting that they should be used with caution and perhaps only to proxy biological intermediates for which there are no known individual variants. Power calculations confirm the feasibility of extending our strategy to the analysis of tens of thousands of molecular phenotypes in large genome-wide meta-analyses. We conclude that our method represents a simple way in which potentially tens of thousands of molecular phenotypes could be screened for causal relationships with disease without having to expensively measure these variables in individual disease collections.Peer reviewe

    Complex Drug–Drug–Gene–Disease Interactions Involving Cytochromes P450: Systematic Review of Published Case Reports and Clinical Perspectives

    Full text link

    Renal Drug Transporters and Drug Interactions.

    Full text link
    Transporters in proximal renal tubules contribute to the disposition of numerous drugs. Furthermore, the molecular mechanisms of tubular secretion have been progressively elucidated during the past decades. Organic anions tend to be secreted by the transport proteins OAT1, OAT3 and OATP4C1 on the basolateral side of tubular cells, and multidrug resistance protein (MRP) 2, MRP4, OATP1A2 and breast cancer resistance protein (BCRP) on the apical side. Organic cations are secreted by organic cation transporter (OCT) 2 on the basolateral side, and multidrug and toxic compound extrusion (MATE) proteins MATE1, MATE2/2-K, P-glycoprotein, organic cation and carnitine transporter (OCTN) 1 and OCTN2 on the apical side. Significant drug-drug interactions (DDIs) may affect any of these transporters, altering the clearance and, consequently, the efficacy and/or toxicity of substrate drugs. Interactions at the level of basolateral transporters typically decrease the clearance of the victim drug, causing higher systemic exposure. Interactions at the apical level can also lower drug clearance, but may be associated with higher renal toxicity, due to intracellular accumulation. Whereas the importance of glomerular filtration in drug disposition is largely appreciated among clinicians, DDIs involving renal transporters are less well recognized. This review summarizes current knowledge on the roles, quantitative importance and clinical relevance of these transporters in drug therapy. It proposes an approach based on substrate-inhibitor associations for predicting potential tubular-based DDIs and preventing their adverse consequences. We provide a comprehensive list of known drug interactions with renally-expressed transporters. While many of these interactions have limited clinical consequences, some involving high-risk drugs (e.g. methotrexate) definitely deserve the attention of prescribers

    Renal Drug Transporters and Drug Interactions

    Full text link
    corecore