4,353 research outputs found

    Language Barriers in Health Care Settings: An Annotated Bibliography of Research Literature

    Get PDF
    Provides an overview of resources related to the prevalence, role, and effects of language barriers and access in health care

    VALIDATION OF WATER PURIFICATION SYSTEM

    Get PDF
    Objective: Validation of water treatment systems is required to achieve water with all preferred quality attributes. This also delivers a circumstantial to establish a total control over the process which screens efficacy, safety, and ultimately, the process outcomes. The goal of steering validation is to establish that a process when operated within established limits, yields a product of reliable and definite quality with a high degree of assurance.Methods: The current work is an effort to deliberate several aspects of validation comprising different approaches, machineries of water purification systems, equipment qualifications, performance testing phases, microbial and chemical analysis of water samples, documentation, and post-validationmonitoring. Mainly the validation is done for new water plants in pharmaceutical industry.Results and Discussion: Sampling of water was carried out after each step in the purification process, and the results were found within limits.Conclusion: Water purification systems must be operated in the interior regulatory guidelines as with pharmaceutical manufacture facilities.Successful achievement of validation is confirmed by various testing phases. Usually, a three-phase testing approach is recommended over an extendedperiod to prove reliability and robustness of the system for producing water of specified quality with a high degree of assurance.Keywords: Validation, Water purification systems, Quality attributes,Pharmaceutical manufacture facilities, Microbial and chemical analysis

    Ferroelectric polarization switching with a remarkably high activation energy in orthorhombic GaFeO3 thin films

    Get PDF
    Orthorhombic GaFeO3 (o-GFO) with the polar Pna2(1) space group is a prominent ferrite owing to its piezoelectricity and ferrimagnetism, coupled with magnetoelectric effects. Herein, we demonstrate large ferroelectric remanent polarization in undoped o-GFO thin films by adopting either a hexagonal strontium titanate (STO) or a cubic yttrium-stabilized zirconia (YSZ) substrate. The polarization-electric-field hysteresis curves of the polar c-axis-grown o-GFO film on a SrRuO3/STO substrate show the net switching polarization of similar to 35 mu C cm(-2) with an unusually high coercive field (E-c) of +/- 1400 kV cm(-1) at room temperature. The positive-up and negative-down measurement also demonstrates the switching polarization of similar to 26 mu C cm(-2). The activation energy for the polarization switching, as obtained by density-functional theory calculations, is remarkably high, 1.05 eV per formula unit. We have theoretically shown that this high value accounts for the extraordinary high E-c and the stability of the polar Pna2(1) phase over a wide range of temperatures up to 1368 K.111714Ysciescopu

    Achieving optimal adherence to medical therapy by telehealth: Findings from the ORBITA medication adherence sub-study

    Get PDF
    INTRODUCTION: The ORBITA trial of percutaneous coronary intervention (PCI) versus a placebo procedure for patients with stable angina was conducted across six sites in the United Kingdom via home monitoring and telephone consultations. Patients underwent detailed assessment of medication adherence which allowed us to measure the efficacy of the implementation of the optimization protocol and interpretation of the main trial endpoints. METHODS: Prescribing data were collected throughout the trial. Self-reported adherence was assessed, and urine samples collected at pre-randomization and at follow-up for direct assessment of adherence using high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS). RESULTS: Self-reported adherence was >96% for all drugs in both treatment groups at both stages. The percentage of samples in which drug was detected at pre-randomization and at follow-up in the PCI versus placebo groups respectively was: clopidogrel, 96% versus 90% and 98% versus 94%; atorvastatin, 95% versus 92% and 92% versus 91%; perindopril, 95% versus 97% and 85% versus 100%; bisoprolol, 98% versus 99% and 96% versus 97%; amlodipine, 99% versus 99% and 94% versus 96%; nicorandil, 98% versus 96% and 94% versus 92%; ivabradine, 100% versus 100% and 100% versus 100%; and ranolazine, 100% versus 100% and 100% versus 100%. CONCLUSIONS: Adherence levels were high throughout the study when quantified by self-reporting methods and similarly high proportions of drug were detected by urinary assay. The results indicate successful implementation of the optimization protocol delivered by telephone, an approach that could serve as a model for treatment of chronic conditions, particularly as consultations are increasingly conducted online

    The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s

    Get PDF
    The Human Silencing Hub (HUSH) complex is necessary for epigenetic repression of LINE-1 elements. We show that HUSH-depletion in human cell lines and primary fibroblasts leads to induction of interferon-stimulated genes (ISGs) through JAK/STAT signaling. This effect is mainly attributed to MDA5 and RIG-I sensing of double-stranded RNAs (dsRNAs). This coincides with upregulation of primate-conserved LINE-1s, as well as increased expression of full-length hominid-specific LINE-1s that produce bidirectional RNAs, which may form dsRNA. Notably, LTRs nearby ISGs are derepressed likely rendering these genes more responsive to interferon. LINE-1 shRNAs can abrogate the HUSH-dependent response, while overexpression of an engineered LINE-1 construct activates interferon signaling. Finally, we show that the HUSH component, MPP8 is frequently downregulated in diverse cancers and that its depletion leads to DNA damage. These results suggest that LINE-1s may drive physiological or autoinflammatory responses through dsRNA sensing and gene-regulatory roles and are controlled by the HUSH complex

    Enteric dysbiosis and fecal calprotectin expression in premature infants.

    Get PDF
    BackgroundPremature infants often develop enteric dysbiosis with a preponderance of Gammaproteobacteria, which has been related to adverse clinical outcomes. We investigated the relationship between increasing fecal Gammaproteobacteria and mucosal inflammation, measured by fecal calprotectin (FC).MethodsStool samples were collected from very-low-birth weight (VLBW) infants at ≤2, 3, and 4 weeks' postnatal age. Fecal microbiome was surveyed using polymerase chain reaction amplification of the V4 region of 16S ribosomal RNA, and FC was measured by enzyme immunoassay.ResultsWe enrolled 45 VLBW infants (gestation 27.9 ± 2.2 weeks, birth weight 1126 ± 208 g) and obtained stool samples at 9.9 ± 3, 20.7 ± 4.1, and 29.4 ± 4.9 days. FC was positively correlated with the genus Klebsiella (r = 0.207, p = 0.034) and its dominant amplicon sequence variant (r = 0.290, p = 0.003), but not with the relative abundance of total Gammaproteobacteria. Klebsiella colonized the gut in two distinct patterns: some infants started with low Klebsiella abundance and gained these bacteria over time, whereas others began with very high Klebsiella abundance.ConclusionIn premature infants, FC correlated with relative abundance of a specific pathobiont, Klebsiella, and not with that of the class Gammaproteobacteria. These findings indicate a need to define dysbiosis at genera or higher levels of resolution

    Evolution of the Multi-Domain Structures of Virulence Genes in the Human Malaria Parasite, Plasmodium falciparum

    Get PDF
    The var gene family of Plasmodium falciparum encodes the immunodominant variant surface antigens PfEMP1. These highly polymorphic proteins are important virulence factors that mediate cytoadhesion to a variety of host tissues, causing sequestration of parasitized red blood cells in vital organs, including the brain or placenta. Acquisition of variant-specific antibodies correlates with protection against severe malarial infections; however, understanding the relationship between gene expression and infection outcome is complicated by the modular genetic architectures of var genes that encode varying numbers of antigenic domains with differential binding specificities. By analyzing the domain architectures of fully sequenced var gene repertoires we reveal a significant, non-random association between the number of domains comprising a var gene and their sequence conservation. As such, var genes can be grouped into those that are short and diverse and genes that are long and conserved, suggesting gene length as an important characteristic in the classification of var genes. We then use an evolutionary framework to demonstrate how the same evolutionary forces acting on the level of an individual gene may have also shaped the parasite's gene repertoire. The observed associations between sequence conservation, gene architecture and repertoire structure can thus be explained by a trade-off between optimizing within-host fitness and minimizing between-host immune selection pressure. Our results demonstrate how simple evolutionary mechanisms can explain var gene structuring on multiple levels and have important implications for understanding the multifaceted epidemiology of P. falciparum malaria

    Pyrolysed almond shells used as electrodes in microbial electrolysis cell

    Get PDF
    9 p.The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (realtime PCR) to determine the amount of bacteria capable of growing on the electrodes’surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes. This research was possible thanks to the financial support of the Junta de Castilla y León, and was financed by European Regional Development Funds (LE320P18). C. B. thanks the Spanish Ministerio de Educación, Cultura y Deporte for support in the form of an FPI fellowship grant (Ref #: BES-2016-078329)
    corecore