1,498 research outputs found

    Mineralogical characteristics influence the structure and pozzolanic reactivity of thermally and mechano-chemically activated meta-kaolinites

    Get PDF
    \ua9 2024 The Royal Society of Chemistry. Increasing early age reactivity of cement replacements is a barrier to reducing the embodied carbon of blended Portland cements. Mechano-chemical activation is an emerging alternative to conventional thermal activation for clays, which can accelerate early age reactivity. Knowledge gaps on the structure and reactivity of mechano-chemically activated kaolinitic clays include the influence of Fe-bearing phases and the mineralogical characteristics of kaolinites from different sources. This study evaluated the effectiveness of mechano-chemical vs. thermal activation for an Fe-rich clay containing disordered kaolinite and 24 wt% goethite, and a low-Fe clay containing highly ordered kaolinite. In the Fe-rich clay, mechano-chemical activation simultaneously caused dehydroxylation of kaolinite to form meta-kaolinite, and dehydration of goethite to form hematite. Agglomerates of intermixed meta-kaolinite and goethite/hematite nanoparticles were shown to have similar Al and Si environments after thermal or mechano-chemical activation (as determined by STEM-EDX, 27Al and 29Si MAS nuclear magnetic resonance and electron energy loss spectroscopy). Mechano-chemical activation enhanced early age (<12 hours) reactivity for both clays. Evaluating early age reactivity by unit mass of anhydrous meta-kaolinite explains how surface-adsorbed moisture results in underperformance of mechano-chemical activation at later ageing times. External surface area alone does not predict reactivity acceleration well - edge : basal surface area of meta-kaolinite is proposed as a more relevant factor that governs early age performance of mechano-chemically activated clays. The structure-property-performance relations of mechano-chemically activated meta-kaolinites are explained through interactions of kaolinites\u27 intrinsic mineralogical characteristics (i.e. initial particle size, aspect ratio, structural order) and extrinsic processing effects (i.e. intensive milling on structural order and physical characteristics)

    Modeling payback from research into the efficacy of left-ventricular assist devices as destination therapy

    Get PDF
    Objectives: Ongoing developments in design have improved the outlook for left-ventricular assist device (LVAD) implantation as a therapy in end-stage heart failure. Nevertheless, early cost-effectiveness assessments, based on first-generation devices, have not been encouraging. Against this background, we set out (i) to examine the survival benefit that LVADs would need to generate before they could be deemed cost-effective; (ii) to provide insight into the likelihood that this benefit will be achieved; and (iii) from the perspective of a healthcare provider, to assess the value of discovering the actual size of this benefit by means of a Bayesian value of information analysis. Methods: Cost-effectiveness assessments are made from the perspective of the healthcare provider, using current UK norms for the value of a quality-adjusted life-year (QALY). The treatment model is grounded in published analyses of the Randomized Evaluation of Mechanical Assistance for the Treatment of Congestive Heart Failure (REMATCH) trial of first-generation LVADs, translated into a UK cost setting. The prospects for patient survival with second-generation devices is assessed using Bayesian prior distributions, elicited from a group of leading clinicians in the field. Results: Using established thresholds, cost-effectiveness probabilities under these priors are found to be low (.2 percent) for devices costing as much as £60,000. Sensitivity of the conclusions to both device cost and QALY valuation is examined. Conclusions: In the event that the price of the device in use would reduce to £40,000, the value of the survival information can readily justify investment in further trials

    Effects of metal cation substitution on hexavalent chromium reduction by green rust

    Get PDF
    Chromium contamination is a serious environmental issue in areas affected by leather tanning and metal plating, and green rust sulfate has been tested extensively as a potential material for in situ chemical reduction of hexavalent chromium in groundwater. Reported products and mechanisms for the reaction have varied, most likely because of green rust’s layered structure, as reduction at outer and interlayer surfaces might produce different reaction products with variable stabilities. Based on studies of Cr(III) oxidation by biogenic Mn (IV) oxides, Cr mobility in oxic soils is controlled by the solubility of the Cr(III)-bearing phase. Therefore, careful engineering of green rust properties, i.e., crystal/particle size, morphology, structure, and electron availability, is essential for its optimization as a remediation reagent. In the present study, pure green rust sulfate and green rust sulfate with Al, Mg and Zn substitutions were synthesized and reacted with identical chromate (CrO42−) solutions. The reaction products were characterized by X-ray diffraction, pair distribution function analysis, X-ray absorption spectroscopy and transmission electron microscopy and treated with synthetic δ-MnO2 to assess how easily Cr(III) in the products could be oxidized. It was found that Mg substitution had the most beneficial effect on Cr lability in the product. Less than 2.5% of the Cr(III) present in the reacted Mg-GR was reoxidized by δ-MnO2 within 14 days, and the particle structure and Cr speciation observed during X-ray scattering and absorption analyses of this product suggested that Cr(VI) was reduced in its interlayer. Reduction in the interlayer lead to the linkage of newly-formed Cr(III) to hydroxyl groups in the adjacent octahedral layers, which resulted in increased structural coherency between these layers, distinctive rim domains, sequestration of Cr(III) in insoluble Fe oxide bonding environments resistant to reoxidation and partial transformation to Cr(III)-substituted feroxyhyte. Based on the results of this study of hexavalent chromium reduction by green rust sulfate and other studies, further improvements can also be made to this remediation technique by reacting chromate with a large excess of green rust sulfate, which provides excess Fe(II) that can catalyze transformation to more crystalline iron oxides, and synthesis of the reactant under alkaline conditions, which has been shown to favor chromium reduction in the interlayer of Fe(II)-bearing phyllosilicates

    Simulating neutron radiation damage of graphite by in-situ electron irradiation

    Full text link
    Radiation damage in nuclear grade graphite has been investigated using transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS). Changes in the structure on the atomic scale and chemical bonding, and the relationship between each were of particular interest. TEM was used to study damage in nuclear grade graphite on the atomic scale following 1.92×108 electrons nm-2 of electron beam exposure. During these experiments EELS spectra were also collected periodically to record changes in chemical bonding and structural disorder, by analysing the changes of the carbon K-edge. Image analysis software from the 'PyroMaN' research group provides further information, based on (002) fringe analysis. The software was applied to the micrographs of electron irradiated virgin 'Pile Grade A' (PGA) graphite to quantify the extent of damage from electron beam exposure

    Surface Fatigue Behaviour of a WC/aC:H Thin-Film and the Tribochemical Impact of Zinc Dialkyldithiophosphate

    Get PDF
    In wind turbine gearboxes, (near-)surface initiated fatigue is attributed to be the primary failure mechanism. In this work, the surface fatigue of a hydrogenated tungsten carbide/amorphous carbon (WC/aC:H) thin-film was tested under severe cyclic tribo-contact using PolyAlphaOlefin (PAO) and PAO + Zinc DialkylDithioPhosphate (ZDDP) lubricants. The film was characterised in terms of its structure and chemistry using X-ray diffraction, analytical Transmission Electron Microscopy (TEM) including Electron Energy Loss Spectroscopy (EELS), as well as X-ray Photoelectron Spectroscopy (XPS). The multilayer carbon thin-film exhibited promising surface fatigue performance showing a slight change in the hybridization state of the aC:H matrix. Dehydrogenation of the thin-film and subsequent transformation of cleaved C-H bonds to non planar sp2 carbon rings were inferred from EELS and XPS results. Whilst tribo-induced changes to the aC:H matrix were not influenced by a nanometer-thick ZDDP reaction-film, the rate of oxidation of WC and its oxidation state were affected. Whilst accelerating surface fatigue on a steel surface, the ZDDP-tribofilm protected the WC/aC:H film from surface fatigue. In contrast to the formation of polyphosphates from ZDDP molecules on steel surfaces, it appeared that on the WC/aC:H thin film surface ZDDP molecules decompose to ZnO suppressing the oxidative degradation of WC

    Intercalation of aromatic sulfonates in ‘green rust’ via ion exchange

    Get PDF
    ‘Green rust’ intercalated with aromatic sulfonates can potentially be effective materials for the treatment of soil and groundwater polluted with chlorinated benzenes. We investigated the potential intercalation of benzene sulfonate (BzS) and 1,3-benzene disulfonate (BzDS) into green rust sulfate (GRSO4) via ion exchange. The GRSO4 reacted with various concentrations of sulfonates were characterized by X-ray diffraction, X-ray scattering and transmission electron microscopy. GR interacted with BzDS did not result in intercalation due to stearic hindrance and electrostatic repulsion. For BzS, mixtures of GRSO4 and GR-BzS (d001 = 14.3 Å) were obtained at molar equivalents of ion exchange capacity >5. The intercalation of BzS in the GR structure is limited (~18% intercalation) since BzS cannot fully replace SO42-. The BzS molecules are likely arranged in the interlayer as a dehydrated monolayer with the –SO3 groups facing away in alternate directions

    Learning from contract change in primary care dentistry: a qualitative study of stakeholders in the north of England

    Get PDF
    The aim of this research was to explore and synthesise learning from stakeholders (NHS dentists, commissioners and patients) approximately five years on from the introduction of a new NHS dental contract in England. The case study involved a purposive sample of stakeholders associated with a former NHS Primary Care Trust (PCT) in the north of England. Semi-structured interviews were conducted with 8 commissioners of NHS dental services and 5 NHS general dental practitioners. Three focus group meetings were held with 14 NHS dental patients. All focus groups and interviews were audio recorded and transcribed verbatim. The data were analysed using a framework approach. Four themes were identified: ‘commissioners’ views of managing local NHS dental services’; ‘the risks of commissioning for patient access’; ‘costs, contract currency and commissioning constraints’; and ‘local decision-making and future priorities’. Commissioners reported that much of their time was spent managing existing contracts rather than commissioning services. Patients were unclear about the NHS dental charge bands and dentists strongly criticised the contract's target-driven approach which was centred upon them generating ‘units of dental activity’. NHS commissioners remained relatively constrained in their abilities to reallocate dental resources amongst contracts. The national focus upon practitioners achieving their units of dental activity appeared to outweigh interest in the quality of dental care provided

    Products of Hexavalent Chromium Reduction by Green Rust Sodium Sulfate and Associated Reaction Mechanisms

    Get PDF
    The efficacy of in vitro Cr(VI) reduction by green rust sulfate suggests that this mineral is potentially useful for remediation of Cr-contaminated groundwater. Previous investigations studied this reaction but did not sufficiently characterize the intermediates and end products at chromate (CrO42−) concentrations typical of contaminant plumes, hindering identification of the dominant reaction mechanisms under these conditions. In this study, batch reactions at varying chromate concentrations and suspension densities were performed and the intermediate and final products of this reaction were analyzed using X-ray absorption spectroscopy and electron microscopy. This reaction produces particles that maintain the initial hexagonal morphology of green rust but have been topotactically transformed into a poorly crystalline Fe(III) oxyhydroxysulfate and are coated by a Cr (oxy) hydroxide layer that results from chromate reduction at the surface. Recent studies of the behavior of Cr(III) (oxy) hydroxides in soils have revealed that reductive transformation of CrO42− is reversible in the presence of Mn(IV) oxides, limiting the applicability of green rust for Cr remediation in some soils. The linkage of Cr redox speciation to existing Fe and Mn biogeochemical cycles in soils implies that modification of green rust particles to produce an insoluble, Cr(III)-bearing Fe oxide product may increase the efficacy of this technique

    Cholesterol and the risk of grade-specific prostate cancer incidence: evidence from two large prospective cohort studies with up to 37 years' follow up

    Get PDF
    <b>Background</b> High cholesterol may be a modifiable risk factor for prostate cancer but results have been inconsistent and subject to potential "reverse causality" where undetected disease modifies cholesterol prior to diagnosis.<p></p> <b>Methods</b> We conducted a prospective cohort study of 12,926 men who were enrolled in the Midspan studies between 1970 and 1976 and followed up to 31st December 2007. We used Cox-Proportional Hazards Models to evaluate the association between baseline plasma cholesterol and Gleason grade-specific prostate cancer incidence. We excluded cancers detected within at least 5 years of cholesterol assay.<p></p> <b>Results</b> 650 men developed prostate cancer in up to 37 years' follow-up. Baseline plasma cholesterol was positively associated with hazard of high grade (Gleason score[greater than or equal to]8) prostate cancer incidence (n=119). The association was greatest among men in the 4th highest quintile for cholesterol, 6.1 to <6.69 mmol/l, Hazard Ratio 2.28, 95% CI 1.27 to 4.10, compared with the baseline of <5.05 mmol/l. This association remained significant after adjustment for body mass index, smoking and socioeconomic status.<p></p> <b>Conclusions</b> Men with higher cholesterol are at greater risk of developing high-grade prostate cancer but not overall risk of prostate cancer. Interventions to minimise metabolic risk factors may have a role in reducing incidence of aggressive prostate cancer
    corecore