27 research outputs found

    A Mapping of Drug Space from the Viewpoint of Small Molecule Metabolism

    Get PDF
    Small molecule drugs target many core metabolic enzymes in humans and pathogens, often mimicking endogenous ligands. The effects may be therapeutic or toxic, but are frequently unexpected. A large-scale mapping of the intersection between drugs and metabolism is needed to better guide drug discovery. To map the intersection between drugs and metabolism, we have grouped drugs and metabolites by their associated targets and enzymes using ligand-based set signatures created to quantify their degree of similarity in chemical space. The results reveal the chemical space that has been explored for metabolic targets, where successful drugs have been found, and what novel territory remains. To aid other researchers in their drug discovery efforts, we have created an online resource of interactive maps linking drugs to metabolism. These maps predict the “effect space” comprising likely target enzymes for each of the 246 MDDR drug classes in humans. The online resource also provides species-specific interactive drug-metabolism maps for each of the 385 model organisms and pathogens in the BioCyc database collection. Chemical similarity links between drugs and metabolites predict potential toxicity, suggest routes of metabolism, and reveal drug polypharmacology. The metabolic maps enable interactive navigation of the vast biological data on potential metabolic drug targets and the drug chemistry currently available to prosecute those targets. Thus, this work provides a large-scale approach to ligand-based prediction of drug action in small molecule metabolism

    The Oral Gonadotropin-releasing Hormone Receptor Antagonist Relugolix as Neoadjuvant/Adjuvant Androgen Deprivation Therapy to External Beam Radiotherapy in Patients with Localised Intermediate-risk Prostate Cancer: A Randomised, Open-label, Parallel-group Phase 2 Trial.

    Get PDF
    Background External beam radiotherapy (EBRT) with neoadjuvant/adjuvant androgen deprivation therapy (ADT) is an established treatment option to prolong survival for patients with intermediate- and high-risk prostate cancer (PCa). Relugolix, an oral gonadotropin-releasing hormone (GnRH) receptor antagonist, was evaluated in this clinical setting in comparison with degarelix, an injectable GnRH antagonist. Objective To evaluate the safety and efficacy of relugolix to achieve and maintain castration. Design, setting, and participants A phase 2 open-label study was conducted in 103 intermediate-risk PCa patients undergoing primary EBRT and neoadjuvant/adjuvant ADT between June 2014 and December 2015. Intervention Patients randomly assigned (3:2) to 24-wk treatment with either daily oral relugolix or 4-wk subcutaneous depot degarelix (reference control). Outcome measurements and statistical analysis The primary endpoint was the rate of effective castration (testosterone <1.73nmol/l) in relugolix patients between 4 and 24 wk of treatment. Secondary endpoints included rate of profound castration (testosterone <0.7nmol/l), prostate-specific antigen (PSA) levels, prostate volume, quality of life (QoL) assessed using the Aging Males' Symptoms scale, and the European Organization for Research and Treatment of Cancer (EORTC) Quality of Life (30-item EORTC core questionnaire [EORTC QLQ-C30] and 25-item EORTC prostate cancer module [EORTC QLQ-PR25]) questionnaires, and safety. No formal statistical comparisons with degarelix were planned. Results and limitations Castration rates during treatment were 95% and 82% with relugolix and 89% and 68% with degarelix for 1.73 and 0.7nmol/l thresholds, respectively. Median time to castration in the relugolix arm was 4 d. During treatment, PSA levels and prostate volumes were reduced in both groups. Three months after discontinuing treatment, 52% of men on relugolix and 16% on degarelix experienced testosterone recovery (statistical significance of differences not tested). Mean and median QoL scores improved following treatment discontinuation. The most common adverse event was hot flush (relugolix 57%; degarelix 61%). Lack of blinding was a potential limitation. Conclusions Relugolix achieved testosterone suppression to castrate levels within days and maintained it over 24 wk with a safety profile consistent with its mechanism of action. Patient summary Oral once-daily relugolix may be a novel oral alternative to injectable androgen deprivation therapies
    corecore