26 research outputs found

    Spin transport in undoped InGaAs/AlGaAs multiple quantum well studied via spin photocurrent excited by circularly polarized light

    Get PDF
    The spin diffusion and drift at different excitation wavelengths and different temperatures have been studied in undoped InGaAs/AlGaAs multiple quantum well (MQW). The spin polarization was created by optical spin orientation using circularly polarized light, and the reciprocal spin Hall effect was employed to measure the spin polarization current. We measured the ratio of the spin diffusion coefficient to the mobility of spin-polarized carriers. From the wavelength dependence of the ratio, we found that the spin diffusion and drift of holes became as important as electrons in this undoped MQW, and the ratio for light holes was much smaller than that for heavy holes at room temperature. From the temperature dependence of the ratio, the correction factors for the common Einstein relationship for spin-polarized electrons and heavy holes were firstly obtained to be 93 and 286, respectively
    corecore