1,898 research outputs found
The origin of dust in galaxies revisited: the mechanism determining dust content
The origin of cosmic dust is a fundamental issue in planetary science. This
paper revisits the origin of dust in galaxies, in particular, in the Milky Way,
by using a chemical evolution model of a galaxy composed of stars, interstellar
medium, metals (elements heavier than helium), and dust. We start from a review
of time-evolutionary equations of the four components, and then, we present
simple recipes for the stellar remnant mass and yields of metal and dust based
on models of stellar nucleosynthesis and dust formation. After calibrating some
model parameters with the data from the solar neighborhood, we have confirmed a
shortage of the stellar dust production rate relative to the dust destruction
rate by supernovae if the destruction efficiency suggested by theoretical works
is correct. If the dust mass growth by material accretion in molecular clouds
is active, the observed dust amount in the solar neighborhood is reproduced. We
present a clear analytic explanation of the mechanism for determining dust
content in galaxies after the activation of accretion growth: a balance between
accretion growth and supernova destruction. Thus, the dust content is
independent of the uncertainty of the stellar dust yield after the growth
activation. The timing of the activation is determined by a critical metal mass
fraction which depends on the growth and destruction efficiencies. The solar
system formation seems to have occurred well after the activation and plenty of
dust would have existed in the proto-solar nebula.Comment: 12 pages, 11 figure
Fractional Cauchy problems on bounded domains: survey of recent results
In a fractional Cauchy problem, the usual first order time derivative is
replaced by a fractional derivative. This problem was first considered by
\citet{nigmatullin}, and \citet{zaslavsky} in for modeling some
physical phenomena.
The fractional derivative models time delays in a diffusion process. We will
give a survey of the recent results on the fractional Cauchy problem and its
generalizations on bounded domains D\subset \rd obtained in \citet{m-n-v-aop,
mnv-2}. We also study the solutions of fractional Cauchy problem where the
first time derivative is replaced with an infinite sum of fractional
derivatives. We point out a connection to eigenvalue problems for the
fractional time operators considered. The solutions to the eigenvalue problems
are expressed by Mittag-Leffler functions and its generalized versions. The
stochastic solution of the eigenvalue problems for the fractional derivatives
are given by inverse subordinators
Designing programs for eliminating canine rabies from islands: Bali, Indonesia as a case study
<p>Background:
Canine rabies is one of the most important and feared zoonotic diseases in the world. In some regions rabies elimination is being successfully coordinated, whereas in others rabies is endemic and continues to spread to uninfected areas. As epidemics emerge, both accepted and contentious control methods are used, as questions remain over the most effective strategy to eliminate rabies. The Indonesian island of Bali was rabies-free until 2008 when an epidemic in domestic dogs began, resulting in the deaths of over 100 people. Here we analyze data from the epidemic and compare the effectiveness of control methods at eliminating rabies.</p>
<p>Methodology/Principal Findings:
Using data from Bali, we estimated the basic reproductive number, R0, of rabies in dogs, to be ~1·2, almost identical to that obtained in ten–fold less dense dog populations and suggesting rabies will not be effectively controlled by reducing dog density. We then developed a model to compare options for mass dog vaccination. Comprehensive high coverage was the single most important factor for achieving elimination, with omission of even small areas (<0.5% of the dog population) jeopardizing success. Parameterizing the model with data from the 2010 and 2011 vaccination campaigns, we show that a comprehensive high coverage campaign in 2012 would likely result in elimination, saving ~550 human lives and ~$15 million in prophylaxis costs over the next ten years.</p>
<p>Conclusions/Significance:
The elimination of rabies from Bali will not be achieved through achievable reductions in dog density. To ensure elimination, concerted high coverage, repeated, mass dog vaccination campaigns are necessary and the cooperation of all regions of the island is critical. Momentum is building towards development of a strategy for the global elimination of canine rabies, and this study offers valuable new insights about the dynamics and control of this disease, with immediate practical relevance.</p>
Cluster Transformation Coefficients for Structure and Dynamics Calculations in n-Particle Systems: Atoms, Nuclei, and Quarks
The structure and dynamics of an n-particle system are described with coupled
nonlinear Heisenberg's commutator equations where the nonlinear terms are
generated by the two-body interaction that excites the reference vacuum via
particle-particle and particle-hole excitations. Nonperturbative solutions of
the system are obtained with the use of dynamic linearization approximation and
cluster transformation coefficients. The dynamic linearization approximation
converts the commutator chain into an eigenvalue problem. The cluster
coefficients factorize the matrix elements of the (n)-particles or
particle-hole systems in terms of the matrix elements of the (n-1)-systems
coupled to a particle-particle, particle-hole, and hole-hole boson. Group
properties of the particle-particle, particle-hole, and hole-hole permutation
groups simplify the calculation of these coefficients. The particle-particle
vacuum-excitations generate superconductive diagrams in the dynamics of
3-quarks systems. Applications of the model to fermionic and bosonic systems
are discussed.Comment: 13 pages, 5 figures, Wigner Proceedings for Conference Wigner
Centenial Pecs, July 8-12, 200
A supernova origin for dust in a high-redshift quasar
Interstellar dust plays a crucial role in the evolution of the Universe by
assisting the formation of molecules, by triggering the formation of the first
low-mass stars, and by absorbing stellar ultraviolet-optical light and
subsequently re-emitting it at infrared/millimetre wavelengths. Dust is thought
to be produced predominantly in the envelopes of evolved (age >1 Gyr), low-mass
stars. This picture has, however, recently been brought into question by the
discovery of large masses of dust in the host galaxies of quasars at redshift
z>6, when the age of the Universe was less than 1 Gyr. Theoretical studies,
corroborated by observations of nearby supernova remnants, have suggested that
supernovae provide a fast and efficient dust formation environment in the early
Universe. Here we report infrared observations of a quasar at redshift 6.2,
which are used to obtain directly its dust extinction curve. We then show that
such a curve is in excellent agreement with supernova dust models. This result
demonstrates a supernova origin for dust in this high-redshift quasar, from
which we infer that most of the dust at high redshifts has probably the same
origin.Comment: To Appear in Nature, September 30, 200
Population Genetics of Franciscana Dolphins (Pontoporia blainvillei): Introducing a New Population from the Southern Edge of Their Distribution
Due to anthropogenic factors, the franciscana dolphin, Pontoporia blainvillei, is the most threatened small cetacean on the Atlantic coast of South America. Four Franciscana Management Areas have been proposed: Espiritu Santo to Rio de Janeiro (FMA I), São Paulo to Santa Catarina (FMA II), Rio Grande do Sul to Uruguay (FMA III), and Argentina (FMA IV). Further genetic studies distinguished additional populations within these FMAs. We analyzed the population structure, phylogeography, and demographic history in the southernmost portion of the species range. From the analysis of mitochondrial DNA control region sequences, 5 novel haplotypes were found, totalizing 60 haplotypes for the entire distribution range. The haplotype network did not show an apparent phylogeographical signal for the southern FMAs. Two populations were identified: Monte Hermoso (MH) and Necochea (NC)+Claromecó (CL)+Río Negro (RN). The low levels of genetic variability, the relative constant size over time, and the low levels of gene flow may indicate that MH has been colonized by a few maternal lineages and became isolated from geographically close populations. The apparent increase in NC+CL+RN size would be consistent with the higher genetic variability found, since genetic diversity is generally higher in older and expanding populations. Additionally, RN may have experienced a recent split from CL and NC; current high levels of gene flow may be occurring between the latter ones. FMA IV would comprise four franciscana dolphin populations: Samborombón West+Samborombón South, Cabo San Antonio+Buenos Aires East, NC+CL+Buenos Aires Southwest+RN and MH. Results achieved in this study need to be taken into account in order to ensure the long-term survival of the species.Fil: Gariboldi, María Constanza. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Tunez, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Luján; ArgentinaFil: Dejean, Cristina Beatriz. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Universidad de Buenos Aires. Facultad de Filosofía y Letras. Instituto de Ciencias Antropológicas. Sección Antropología Biológica; ArgentinaFil: Failla, Mauricio. Fundación Cethus; ArgentinaFil: Vitullo, Alfredo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; ArgentinaFil: Negri, Maria Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; ArgentinaFil: Cappozzo, Humberto Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Maimónides. Área de Investigaciones Biomédicas y Biotecnológicas. Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales ; Argentin
Automatic mapping of atoms across both simple and complex chemical reactions
Mapping atoms across chemical reactions is important for substructure searches, automatic extraction of reaction rules, identification of metabolic pathways, and more. Unfortunately, the existing mapping algorithms can deal adequately only with relatively simple reactions but not those in which expert chemists would benefit from computer's help. Here we report how a combination of algorithmics and expert chemical knowledge significantly improves the performance of atom mapping, allowing the machine to deal with even the most mechanistically complex chemical and biochemical transformations. The key feature of our approach is the use of few but judiciously chosen reaction templates that are used to generate plausible "intermediate" atom assignments which then guide a graph-theoretical algorithm towards the chemically correct isomorphic mappings. The algorithm performs significantly better than the available state-of-the-art reaction mappers, suggesting its uses in database curation, mechanism assignments, and - above all - machine extraction of reaction rules underlying modern synthesis-planning programs
Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw.
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition
- …