9 research outputs found

    Identification of Key Processes that Control Tumor Necrosis Factor Availability in a Tuberculosis Granuloma

    Get PDF
    Tuberculosis (TB) granulomas are organized collections of immune cells comprised of macrophages, lymphocytes and other cells that form in the lung as a result of immune response to Mycobacterium tuberculosis (Mtb) infection. Formation and maintenance of granulomas are essential for control of Mtb infection and are regulated in part by a pro-inflammatory cytokine, tumor necrosis factor-α (TNF). To characterize mechanisms that control TNF availability within a TB granuloma, we developed a multi-scale two compartment partial differential equation model that describes a granuloma as a collection of immune cells forming concentric layers and includes TNF/TNF receptor binding and trafficking processes. We used the results of sensitivity analysis as a tool to identify experiments to measure critical model parameters in an artificial experimental model of a TB granuloma induced in the lungs of mice following injection of mycobacterial antigen-coated beads. Using our model, we then demonstrated that the organization of immune cells within a TB granuloma as well as TNF/TNF receptor binding and intracellular trafficking are two important factors that control TNF availability and may spatially coordinate TNF-induced immunological functions within a granuloma. Further, we showed that the neutralization power of TNF-neutralizing drugs depends on their TNF binding characteristics, including TNF binding kinetics, ability to bind to membrane-bound TNF and TNF binding stoichiometry. To further elucidate the role of TNF in the process of granuloma development, our modeling and experimental findings on TNF-associated molecular scale aspects of the granuloma can be incorporated into larger scale models describing the immune response to TB infection. Ultimately, these modeling and experimental results can help identify new strategies for TB disease control/therapy

    Human Granuloma In Vitro Model, for TB Dormancy and Resuscitation

    Get PDF
    Tuberculosis (TB) is responsible for death of nearly two million people in the world annually. Upon infection, Mycobacterium tuberculosis (Mtb) causes formation of granuloma where the pathogen goes into dormant state and can live for decades before resuscitation to develop active disease when the immune system of the host is weakened and/or suppressed. In an attempt to better understand host-pathogen interactions, several groups have been developing in vitro models of human tuberculosis granuloma. However, to date, an in vitro granuloma model in which Mtb goes into dormancy and can subsequently resuscitate under conditions that mimic weakening of the immune system has not been reported. We describe the development of a biomimetic in vitro model of human tuberculosis granuloma using human primary leukocytes, in which the Mtb exhibited characteristics of dormant mycobacteria as demonstrated by (1) loss of acid-fastness, (2) accumulation of lipid bodies (3) development of rifampicin-tolerance and (4) gene expression changes. Further, when these micro granulomas were treated with immunosuppressant anti-tumor necrosis factor-alpha monoclonal antibodies (anti-TNFα mAbs), resuscitation of Mtb was observed as has been found in humans. In this human in vitro granuloma model triacylglycerol synthase 1deletion mutant (Δtgs1) with impaired ability to accumulate triacylglycerides (TG), but not the complemented mutant, could not go into dormancy. Deletion mutant of lipY, with compromised ability to mobilize the stored TG, but not the complemented mutant, was unable to come out of dormancy upon treatment with anti-TNFα mAbs. In conclusion, we have developed an in vitro human tuberculosis granuloma model that largely exhibits functional features of dormancy and resuscitation observed in human tuberculosis

    Manipulation of acute inflammatory lung disease

    No full text
    corecore